

Professor Tom Megeath Ritter 204 Phone: 419-530-7812 Email: megeath@physics.utoledo.edu (please put A2020 in subject or the email may be unintentionally deleted as SPAM) Office Hours: Monday 11:00AM-12 Wednesday 1-2PM Friday 11:00AM-12 (subject to change) or by appointment

Lectures can be found in PDF format at http://astro1.physics.utoledo.edu/~megeath/a2020/a2020.html (may take up to one week to post in some cases)

Book: The Cosmic Perspective, 4+th edition

Prof. Tom Megeath		MH 2002 Spring Semester 2
Date	Chapter	Topic (schedule approximate; subject to change)
12 Jan	1	Intro to the class, The size of the Universe
14 Jan	1	The history of the universe
19 Jan	2	Constellations and the distances to the stars HW #1 given
21 Jan	4	Gravity and the laws of motion
26 Jan	3	Light, spectra and blackbody
28 Jan	6	Observing the universe: telescopes HW #2 given, HW #1 back
02 Feb	14	The Sun and the stars
04 Feb	15	The HR diagram and stellar clusters HW #3 given, HW #2 back
09 Feb	17	The origin of stars
11 Feb	16	Stellar evolution HW #3 back
16 Feb		Review of homework solutions and review for test.
18 Feb		MIDTERM EXAM #1 - all material through stellar evolution
23 Feb	18	The cosmic graveyard: white dwarfs and neutron stars
25 Feb	18, 19	Our galaxy and black holes HW#4 given
02 Mar	17, 19	The interstellar medium and cosmic recycling
04 Mar	19	Other galaxies and the expansion of galaxies HW #4 back
09 Mar		Spring Break
11 Mar		Spring Break
16 Mar		Provisional: Planetarium show - meet at Ritter Planetarium
18 Mar	20	Galaxy evolution, HW #5 out
23 Mar	21	The cosmic web
25 Mar		Review of homework solutions and review for test HW #5 back
30 Mar		MIDTERM EXAM #2 - cosmic graveyard through the cosmic web
01 Apr	\$2	Special relativity
06 Apr	\$3	General relativity HW #6 given, planetarium reports due
08 Apr	22	Dark energy and cosmology
13 Apr	\$4	Quantum mechanics and fundamental particles HW #6 back, HW #7 given
15 Apr	23	The Beginning of the Universe
20 Apr	12/17/22	The future of the Earth, Sun and the Universe HW #8 given, HW #7 back
22 Apr	13/24	Other Planets and Interstellar Travel
27 Apr	24	Origin of Life and The Search for Extraterrestrial Life HW#8 back
29 Apr		Review of homework and review for test
06 May	All	FINAL EXAM 10:15-12:15 - everything!!

Course Mechanics

8 homework sets

One planetarium show - the date is not finalized

Attending planetarium show and writing a one page report on the show will count as two homework sets.

2 midterms

1 final

Grade: Final: 30% Midterms: 40% Homework: 30%

Policy on math in Astronomy 2010

You are expected in this class:

- 1. Be capable of high school level geometry and algebra
- 2. Know the metric system
- 3. Be able to use scientific notation
- These skill will be needed to answer some of the midterm questions.

Scientific Notation

 $\begin{array}{l} 10 = 10^{1} \\ 100 = 10^{2} \\ 1000 = 10^{3} \\ 210,000 = 2.1 \ x \ 10^{5} \end{array}$

This is important in astronomy. For example, the mass of the Sun is:

- One year is 3.1557 x 10⁷ seconds or approximately = $\pi x 10^7$ seconds

Distance:	Volume:
1 mile = 1.6 km	1 gallon = 3.791 (liter)
1 foot = 0.3 m	1000 ml = 1.1
1 inch = 2.54 cm	
100 cm = 1 m	
1000 m = 1 km	
$10^5 \text{ cm} = 1 \text{ km}$	
Mass:	

Temperature

Fahrenheit - proposed by Gabriel Fahrenheit in 1724 no one is certain how he came up with the scale

Celsius (Metric) 0 C = freezing point of water = 32 F 100 C = boiling point = 212 F

Kelvin

273 K = 0 C 273 K = freezing point of water 373 K = boiling point of water

0 K is absolute zero, the lowest temperature possible.

Astronomers use the Kelvin scale.

Orders of Magnitude

Scientist use the phrase "order of magnitude" to indicate when something is ten times bigger, smaller, denser, older, younger, etc.... than something else.

For example:

Milky Way Galaxy is nine orders of magnitude bigger than our solar system

Measuring Distances with a Beam of Light

The Speed of Light in a vacuum:

299,792.458 km/s (kilometers per second)

The speed of light is a universal constant, it does not change over time or from place to place.

Thought Experiment: imagine two teams of scientist measuring the speed of a beam of light. One team measures the speed from a ground. The second team measures the speed from a fast moving airplane following the light beam. Do the two measurements differ?

Imagine shining a laser beam into space

Destination	Light travel time
Moon	1 second
Sun	8 minutes
Sirius	8 years
Andromeda Galaxy	2.5 million years

8 Minutes Home Sweet Home Distance from Sun 1.0AU Radius:6378 Km Mass: 1. Earth Masses Temperature: 290 K Orbital Period: 365.25 Days One Moon

4-12 Years: Nearby Stars in the Neighborhood 25 Nearest Star Systems 1.59 solar masses 1.59 solar masses 12 light years 2 solar masses Out of the 25 nearest stars: Only two more massive than the sun Nine are stellar system with two to three stars orbiting each other

RECONS

View from the Earth: Edge On

Our Galaxy: The Milky Way

For Light Beam to go to center from Earth: 25,500 years

For light beam to traverse; Galaxy: 100,000 years

Artist Conception of view from above the Milky Way

How big is the Universe? • The Milky Way is one of about 100 billion galaxies. • 10¹¹ stars/galaxy x 10¹¹ galaxies = 10²² stars For each of the stars of

If you had to write your address to an alien somewhere else in the Universe, what would you put?

How far do we travel every day?

From rotation or Earth: 29,000 km

From orbit of Earth around Sun: 2.4 million km

From orbit of Sun around Galaxy: 14 million km

Cosmic Motion

The universe is in constant motion, *for example:* How fast are we moving: Rotation of the Earth: 1200 km/hr Earth going around Sun: 100,000 km/hr The Solar System going around the Galaxy: 600,000 km/hr Our Galaxy moving in the Local Group: 300,000 km/hr Our galaxy moving toward the Virgo cluster: 1x10⁶ km/hr

The Universe is Dynamic: Interacting Galaxies

http://www.cita.utoronto.ca/~dubinski/antennae

The dynamic events occur over millions and billions of years?

How do we study the dynamic universe when things change so slowly?

Answer 1: Telescopes are Time Machines

When you look at an object 1 light away, you are looking at what it looked like 1 year ago.

When you look at an object 1 million light years away, you are looking at it 1 million years ago.

The universe is thought to be 13.66 billion years old, so when you look back 12.7 billion years - are you looking back to a time when the universe was "young".

Cosmic evolution can be studied by looking at more and more distant objects.

If the Sun suddenly stopped emitting light, how long before we would know it?

a. Instantaneousb. 8 minutesc. A few daysd. One year

How far away is the light emitted by our Sun from the Jurassic time of the dinosaurs (150 million years ago)?

a. In our solar systemb. In our galaxyc. In the Local Groupd. Beyond the Local Group

Answer 2: By Observing Objects at Different Stages of Evolution

Young star (pre-main sequence) Our sun (main sequence star)

Planetary nebula (dying star)

