

Professor Tom Megeath
Ritter 204
Phone: 419-530-7812
Email: megeath@physics.utoledo.edu
(please put A2020 in subject or the email may be unintentionally deleted as SPAM)
Office Hours: Monday 11:00AM-12
Wednesday 1-2PM
Friday 11:00AM-12
(subject to change)
or by appointment
Lectures can be found in PDF format at
http://astro1.physics.utoledo.edu/~megeath/a2020/a2020.html (may take up to one week to post in some cases)

Book: The Cosmic Perspective, 4+th edition


## Course Mechanics

8 homework sets
One planetarium show - the date is not finalized
Attending planetarium show and writing a one page report on the show will count as two homework sets.

2 midterms
1 final
Grade: Final: 30\% Midterms: 40\% Homework: 30\%

## Policy on math in Astronomy 2010

You are expected in this class:

1. Be capable of high school level geometry and algebra
2. Know the metric system
3. Be able to use scientific notation

These skill will be needed to answer some of the midterm questions.

## Scientific Notation

$10=10^{1}$
$100=10^{2}$
$1000=10^{3}$
$210,000=2.1 \times 10^{5}$

This is important in astronomy. For example, the mass of the Sun is:
$1,988,920,000,000,000,000,000,000,000,000,000 \mathrm{gm}=$ $1.988920 \times 10^{33} \mathrm{gm}$

One year is $3.1557 \times 10^{7}$ seconds or approximately $=\pi \times 10^{7}$ second

## Temperature

Fahrenheit - proposed by Gabriel Fahrenheit in 1724 no one is certain how he came up with the scale

Celsius (Metric)
$0 \mathrm{C}=$ freezing point of water $=32 \mathrm{~F}$
$100 \mathrm{C}=$ boiling point $=212 \mathrm{~F}$

Kelvin
$273 \mathrm{~K}=0 \mathrm{C}$
$273 \mathrm{~K}=$ freezing point of water
$373 \mathrm{~K}=$ boiling point of water
0 K is absolute zero, the lowest temperature possible.
Astronomers use the Kelvin scale.

## Thermal Energy: Temperature Scales



## Orders of Magnitude

Scientist use the phrase "order of magnitude" to indicate when something is ten times bigger, smaller, denser, older, younger, etc..... than something else.
For example:
Milky Way Galaxy is nine orders of magnitude bigger than our solar system

## Special Astronomy Units

Solar Mass $=$ mass of the sun $=2 \times 10^{33}$ grams
Jupiter Mass $=0.001$ solar masses $=2 \times 10^{30}$ grams
Earth Mass $=0.003$ Jupiter masses $=6 \times 10^{27}$
Astronomical Unit = distance from the Earth to the Sun
Light Year $=$ distance light travels in $1 \mathrm{yr}=9.4 \times 10^{17} \mathrm{~cm}$
Parsec $=3.26$ light years $=3.08 \times 10^{18} \mathrm{~cm}$
Factoid: the nearest star is $\mathbf{1 . 3 0} \mathbf{~ p c}$ or $\mathbf{4 . 2 2}$ light years

## Measuring Distances with a Beam of Light

The Speed of Light in a vacuum:
$299,792.458 \mathrm{~km} / \mathrm{s}$ (kilometers per second)
The speed of light is a universal constant, it does not change over time or from place to place.

Thought Experiment: imagine two teams of scientist measuring the speed of a beam of light. One team measures the speed from a ground. The second team measures the speed from a fast moving airplane following the light beam. Do the two measurements differ?

Measuring Distances on a Cosmic Scale
Since the speed of light is constant, it makes a convenient means for measuring distances.

Distance to the nearest star:

Kilometers: $4 \times 10^{13} \mathrm{~km}$
Light Years: 4.2 ly
Parsecs: 1.29 pc
(I will explain why astronomers use parsecs in lecture 3)


Imagine shining a laser beam into space

| $\quad$ Destination | Light travel time |
| :--- | :--- |
| Moon | 1 second |
| Sun | 8 minutes |
| Sirius | 8 years |
| Andromeda Galaxy | 2.5 million years |



The Outer Solar System


40 minutes - the planet Jupiter

4 hours - the dwarf planet Pluto

13 hours - Sedna (most distant known object)

57 days - the Oort cloud.

5000 Years: The Inner Milky Way Galaxy



The Milky Way in Visible Light



Our Galaxy: The Milky Way


For Light Beam to go to center from Earth: 25,500 years

For light beam to traverse; Galaxy: 100,000 years

Artist Conception of view from above the Milky Way


1-10 Myr: The Local Group of Galaxies


50 Million Years: Sombrero Galaxy


The Hubble Space Telescope Ultra Deep Field


The Hubble Space Telescope Ultra-Deep Field

+ (out to 12.7 billion years)

If you had to write your address to an alien somewhere else in the Universe, what would you put?

How big is the Universe?

- The Milky Way is one of about 100 billion galaxies.
- $10^{11}$ stars/galaxy $\times 10^{11}$ galaxies $=10^{22}$ stars


As many stars as grains of (dry) sand on all Earth's beaches..


## How far do we travel every day?

From rotation or Earth: 29,000 km

From orbit of Earth around Sun: 2.4 million km

## Cosmic Motion

The universe is in constant motion, for example:
How fast are we moving:
Rotation of the Earth: 1200 km/hr
Earth going around Sun: $100,000 \mathrm{~km} / \mathrm{hr}$
The Solar System going around the Galaxy: 600,000 km/hr Our Galaxy moving in the Local Group: $300,000 \mathrm{~km} / \mathrm{hr}$
Our galaxy moving toward the Virgo cluster: $1 \times 10^{6} \mathrm{~km} / \mathrm{hr}$
From orbit of Sun around Galaxy: 14 million km

The Universe is Dynamic! Galaxies in the Ultra Deep Field


The Universe is Dynamic:
Interacting Galaxies


The Universe is Dynamic: Interacting Galaxies
http://www.cita.utoronto.ca/~dubinski/antennae

The dynamic events occur over millions and billions of years?

How do we study the dynamic universe when things change so slowly?
http://www.einstein-online.info/en/elementary/cosmology/expansion/index.html
The Universe is Dynamic: Expanding Universe


## Answer 1:

Telescopes are Time Machines
When you look at an object 1 light away, you are looking at what it looked like 1 year ago.

When you look at an object 1 million light years away, you are looking at it 1 million years ago.
The universe is thought to be 13.66 billion years old, so when you look back 12.7 billion years - are you looking back to a time when the universe was "young".

Cosmic evolution can be studied by looking at more and more distant objects.

If the Sun suddenly stopped emitting light, how long before we would know it?
a. Instantaneous
b. 8 minutes
c. A few days
d. One year

How far away is the light emitted by our Sun from the Jurassic time of the dinosaurs (150 million years ago)?
a. In our solar system
b. In our galaxy
c. In the Local Group
d. Beyond the Local Group



## Summary

Measuring distances by travel times of light.
Traveling on a ray of light (know the relative sizes of things!)
Your cosmic address
The moving cosmos
The dynamic cosmos
Summary
Measuring distances by travel times of light.
Traveling on a ray of light (know the relative sizes of things!)
Your cosmic address
The moving cosmos
The dynamic cosmos

## Answer 3: By using physics



