Chapters 5 & 6: Forces & Friction

\[\vec{F} = m \vec{a} \] Newton's 2nd Law

\[\vec{F}_g = F_N = N = mg = W \text{ (weight)} \]

\[f_{s, \text{max}} = \mu_s F_N \] force due to static friction

\[f_{k, \text{max}} = \mu_k F_N \] force due to kinetic (or sliding) friction

\[a_c = \frac{v^2}{r} \] centripetal acceleration (circular motion)

\[F = \frac{mv^2}{r} \] centripetal force (circular motion)

Chapters 7 & 8: Energy

\[K = \frac{1}{2} mv^2 \] Kinetic energy

\[W = \vec{F} \cdot \vec{d} \] Work

\[\Delta K = K_f - K_i = W \] Work - Kinetic Energy Theorem

\[W_g = m \vec{d} \cos(\phi) \] Work done by gravity

\[\vec{F}_s = -k \vec{d} \] Hooke's Law (force of a spring)

\[W_s = \frac{1}{2} k x_i^2 - \frac{1}{2} k x_f^2 \] Work done by a spring

\[\Delta U = -W \] Change in potential energy is minus the work

\[\Delta U = mg (y_f - y_i) = mg (\Delta y) = mgh \] Potential energy

\[U(x) = \frac{1}{2} k x^2 \] Potential energy of a spring

\[E_{\text{mech}} = K + U \] Total mechanical energy = kinetic + potential

\[K_f + U_f = K_i + U_i \] Conservation of Mechanical Energy

\[P_{\text{avg}} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t} \] average Power
Chapter 9: Center of Mass & Linear Momentum

\[r_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i r_i \]
center of mass in general (M is total mass of all particles)

\[\vec{p} = m \vec{\dot{v}} \quad \text{linear momentum} \]

\[\vec{J} = \Delta \vec{p} = \vec{p}_f - \vec{p}_i, \quad \text{Impulse} \]

\[J = \vec{F} \Delta t \]

\[\vec{p}_f = \vec{p}_i \quad \text{Conservation of Linear Momentum} \]

Chapter 10: Rotation

\[\theta = \frac{s}{r} \quad \text{angular position} \]

\[\omega_{\text{avg}} = \frac{\Delta \theta}{\Delta t} \quad \text{angular velocity} \]

\[\alpha_{\text{avg}} = \frac{\Delta \omega}{\Delta t} \quad \text{angular acceleration} \]

\[s = \theta r \quad \text{linear position} \]

\[v = \omega r \quad \text{linear velocity} \]

\[a_r = \alpha r \quad \text{linear tangential acceleration} \]

\[a_r = \frac{v^2}{r} = \omega^2 r \quad \text{linear radial acceleration} \]

\[T = \frac{2 \pi r}{v} = \frac{2 \pi}{\omega} \quad \text{Period of an object undergoing uniform circular motion} \]

\[\tau = \vec{r} \times \vec{F} = r F \sin(\phi) \quad \text{Torque} \]

Chapter 11: Rolling, Torque, and Angular Momentum

\[K = \frac{1}{2} I_{\text{com}} \omega^2 + \frac{1}{2} M v_{\text{com}}^2 \quad \text{Kinetic energy of a rolling wheel} \]

\[v_{\text{com}} = \omega R \quad \text{linear velocity of wheel's center of mass} \]

\[a_{\text{com}} = \alpha R \quad \text{linear acceleration of wheel's center of mass} \]

\[\vec{I} = \vec{r} \times \vec{p} = m(\vec{r} \times \vec{\dot{v}}) \quad \text{angular momentum} \]
\[l = rm \sin(\phi) \]

\[\vec{L}_f = \vec{L}_i \] Conservation of Angular Momentum

Chapter 12: Statics

For a system in static equilibrium:

\[F_{net} = 0 \quad \text{(sum of all the forces must be zero.)} \]

\[\tau_{net} = 0 \quad \text{(sum of all the torques must be zero.)} \]

Chapter 15: Oscillations

Simple Harmonic Motion

\[x(t) = x_m \cos(\omega t + \phi) \quad \text{(displacement)} \]

\[x_m \] is the amplitude

\[\omega = \frac{2\pi}{T} = 2\pi f \quad \text{(angular frequency)} \]

\[v(t) = -\omega x_m \sin(\omega t + \phi) \quad \text{(velocity)} \]

\[v_m = \omega x_m \quad \text{(velocity amplitude)} \]

\[a(t) = -\omega^2 x_m \cos(\omega t + \phi) \quad \text{(acceleration)} \]

\[a_m = \omega^2 x_m \quad \text{(acceleration amplitude)} \]

\[a(t) = -\omega^2 x(t) \]

For linear simple harmonic oscillator (S.H.O.)

\[\omega = \sqrt{k/m} \quad \text{(angular frequency)} \]

\[T = 2\pi \sqrt{m/k} \quad \text{(period of a spring)} \]

\[T = 2\pi \sqrt{L/g} \quad \text{(period of simple pendulum)} \]

Energy

\[U(t) = \frac{1}{2} kx^2 = \frac{1}{2} kx_m^2 \cos^2(\omega t + \phi) \quad \text{(potential energy)} \]

\[K(t) = \frac{1}{2} mv^2 = \frac{1}{2} kx_m^2 \sin^2(\omega t + \phi) \quad \text{(kinetic energy)} \]

\[E = U + K = \frac{1}{2} kx_m^2 \quad \text{(total energy)} \]
Chapter 16: Waves

Types of waves:
- Mechanical (must have a medium through which to propagate)
- Electromagnetic (does not need a medium through which to propagate)

Transverse waves: Displacement of every oscillating element is perpendicular to direction of travel.
Examples: waves in water, waves on a string

Longitudinal waves: Displacement of every oscillating element is parallel to direction of travel.
Examples: sound waves

\[y(t) = y_m \sin(kx - \omega t) \] (general expression for a wave)

- \(y_m \) is the amplitude
- \(k \) is angular wave number
- \(x \) is position
- \(\omega \) is angular frequency
- \(t \) is time

\[\omega = \frac{2 \pi}{T} \]

\[f = \frac{1}{T} = \frac{\omega}{2\pi} \]

Speed of traveling wave (assume \(kx - \omega t \) is constant)

\[v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f \]

\[y(x, t) = \sin(kx \pm \omega t) \] (- means wave travels in +x direction)
(+ means wave travels in – x direction)

\[v = \sqrt{\frac{T}{\mu}} \] (for a stretched string)

Constructive & destructive interference

Chapter 17: Sound

sound is longitudinal, mechanical wave

\[f = f_v \frac{v \pm v_p}{v \pm v_s} \] Doppler effect
Chapter 14: Fluids

\[\rho = \frac{m}{V} \] volume density

\[p = \frac{F}{A} \] pressure (if force is uniform over a flat area)

\[A_1 v_1 = A_2 v_2 \] Continuity Equation

\[p + \frac{1}{2} \rho v^2 + \rho g y = \text{constant} \] Bernoulli’s equation based on Conservation of Mechanical Energy

\[p + \rho g y = \text{constant} \quad \text{or} \quad p_2 = p_1 + \rho g (y_1 - y_2) \] for fluid at rest, \(v = 0 \)

\[p + \frac{1}{2} \rho v^2 = \text{constant} \] for \(y = \) constant; if \(v \) increases, then \(p \) decreases

Chapter 18: Temperature, Heat, and the 1st Law of Thermodynamics

\[\Delta L = L \alpha \Delta T \] Linear thermal expansion

\[Q = cm(T_f - T_i) \] Heat; \(c \) is specific heat of material

\[Q = Lm \] Heat of Transformation

\[\Delta E_{\text{internal}} = E_{\text{internal}, f} + E_{\text{internal}, i} = Q - W \] 1st Law of Thermodynamics

Special cases of the 1st Law of Thermodynamics

adiabatic process: \(Q = 0, \Delta E_{\text{internal}} = -W \)

constant-volume process: \(W = 0, \Delta E_{\text{internal}} = Q \)

cyclical process: \(\Delta E_{\text{internal}} = 0, Q = W \)

free expansions: \(Q = W = \Delta E_{\text{internal}} = 0 \)

\[P_{\text{cond}} = \frac{Q}{t} = kA \frac{T_H - T_C}{L} \] Heat Conduction Rate