The Thomas precession gives g, —1, notg,_/2
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Modern experimental techniques such as laser-rf excita-
tion, quantum beat spectroscopy, level crossing measure-
ments, etc. provide direct determinations of atomic fine
structure splittings, often to uncertainties of less than
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10~ ' Rydberg units. For hydrogenlike atoms these split-
tings can be predicted by a neat and concise semiclassical
development of the spin-orbit interaction energy, present-
ed in many textbooks on atomic physics (Refs. 1-5), that is
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based on the Biot—-Savart law and the vector model of angu-
lar momentum. Although the data available are of suffi-
cient accuracy that self-energy corrections to the anoma-
lous magnetic moment of the electron are necessary to
obtain agreement, these contributions are neglected in
most textbook developments. The purpose of this note is to
indicate how self-energy corrections can be retained in the
standard exposition of the spin-orbit energy with no in-
crease in complexity, producing an expression that agrees
with the experiment to within four parts in 10°.

The standard textbook development'~® of the spin-orbit
interaction energy considers the magnetic field seen by an
electron in a hydrogenlike atom due to the apparent motion
of the nucleus, which is given by (in standard symbols'™)

B _ k Ze(rXv) _ Zke L

¢ 2 ’3

(D

me? P
and the anomalous magnetic moment of the electron, given
by

2m
In the rest frame of the electron the interaction energy for
these two charge circulations is
Zke* L-S

AE= —p-B=g 2% _
H g 2(mc)*> #

(3)

To transform to the rest frame of the nucleus it is necessary

to take into account the Thomas precession. This is dis- .

cussed in Refs. 1, 6, and 7, and requires that the Larmor
frequency due to electron spin be corrected by the addition
of the transformational Thomas frequency. The Thomas
precession is in a direction opposite to the electron Larmor
precession, and involves all of the same quantities except
for the electron g factor. The frequency after transforma-
tion to the rest system of the nucleus is
eB eB

¢B
0o=g ———=1(g, —1)—. 4
& 2m 2m & 2m )

Since the energy is given by

Zke* L-S
the g, — 1 factor also occurs in the energy. At this point
most textbooks approximate the anomalous magnetic mo-

ment by the Dirac moment g, (D) = 2, neglecting the elec-
tron self-energy corrections that are given by

g, =2+ (a/m) —0.65T(a/m)> + . (6)

(Models for the origin of these corrections have been pre-
sented by Grotch and Kazes.®) Some textbook develop-
ments substitute g, (D) — 1 = 1, removing the explicit
dependence upon g,, whereas others substitute
g.(D) —1=g,(D)/2. Although the use of the multiplica-
tive factor g,/2 to make the additive correction for the
Thomas precession is technically correct in the limit
2. —g. (D) = 2,its use can be misleading to students, since

AE=oS= (g, —1) ) (3)

g.2=14+a27+ -, 7
whereas
g —l=1+a/m+--. (8)
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Possible confusion in comparing textbook expressions de-
scribing atomic physics and quantum electrodynamics
could be avoided simply by retaining the general correction
factor g, — 1 in the expression for the fine structure. The
self-energy corrections are important, amounting to
0.23%, substantially larger than, e.g., reduced mass cor-
rections that are only 0.05%.

If self-energy corrections are included through the
g. — 1 factor, and the expectation values

LSy =[j(j+ 1) —Il(I+ 1) —=s(s+ 1)]#/2  (9)
and
(r'3)=(Z/a0n)3[l(l+%)(l+1)]*' (10)

are substituted into Eq. (5) and reduced mass corrections
are made, the expression for the fine structure separation
between two levels with the same n, /,s,andj = + s( + )
andj =/ — s( — ) obtained from Eqgs. (5), (8)-(10) is

(AE(+) —AE(—))
__O+a/m Ra*Z*
(1+m,/M,) n’l(l+1)

For the fine structure of the 2p term in hydrogen, Eq. (11)
yields 10 968.74 mHz, which is within four parts in 10° of
the experimental value of 10 969.127(87) mHz.'"

In addition to its application to hydrogenlike values, Eq.
(11) is also useful in describing the fine structure of x ray
and optical spectra in complex many-electron atoms,
through the use of a noninteger screened charge Z—Z — S.
Eq. (11) is the lowest-order term in an aZ expansion of the
Dirac energy, and an explicit general expression for gener-
ating higher order corrections is given in Ref. 11.

Thus, within the spirit of the heuristic derivation, this
exposition of the spin-orbit interaction accounts for the
self-energy corrections through the factor g, — 1, and pro-
vides a useful pedagogic example which illustrates the very
high precision that is possible in atomic spectroscopy.

(2s). (11)

ACKNOWLEDGMENT

This work was partially supported by the U.S. Depart-
ment of Energy, Division of Chemical Sciences, under
Contract No. DE-AS05-80ER 10676.

'R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Sol-
ids, Nuclei, and Particles (Wiley, New York, 1985), 2nd ed., p. 279 and
Appendix 0.

*B. W. Shore and D. H. Menzel, Principles of Atomic Spectra (Wiley,
New York, 1968), p. 311.

*N. Tralli and F. R. Pomilli, Atomic Theory, An Introduction to Wave
Mechanics (McGraw-Hill, New York, 1969), p. 170.

*J. Norwood, Jr., Twentieth Century Physics (Prentice-Hall, Englewood
Cliffs, NJ, 1976), p. 236.

°S. Wieder, The Foundations of Quantum Theory (Academic, New York,
1973), p. 178.

°G. P. Fisher, Am. J. Phys. 39, 1528 (1971); 40, 1772 (1972).

V. V. Dixit and L. P. S. Singh, Am. J. Phys. 48, 415 (1980): 49, 283
(1981).

%H. Grotch and E. Kazes, Am. J. Phys. 45, 618 (1977).

“M. W. P. Strandberg, Am. J. Phys. 54, 321 (1986).

'E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).

""L. J. Curtis, J. Phys. B 10, L641 (1977).

Notes and Discussions 1045




