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Abstract
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Physica Scripta (Sweden) 2, 216-220, 1970.

The contributions of cascades to multi-exponential decay curves are analysed.
We define the quantitative cascade contribution to an exponential decay
as the replenishment ratio, which is the ratio of the cascade repopulation
rate to the decay depopulation rate. We recommend that this ratio be quoted
in future papers on beam-foil or other cascade-affected decay measure-
ments. We also present specific relationships between the fitting parameters
and the level populations for decay curves which arise from electric dipole
transition schemes of up to second order in cascading. Velocity dispersion
effects in beam-foil decays are, in general, shown to be negligible. except
for decays from ejected foil-particles.

1. Introduction

At the Second International Conference on Beam-Foil Spectro-
scopy [1] at Lysekil, in June 1970, much concern was expressed [2]
regarding systematic errors in atomic mean lives obtained from
cascade-affected time-decay curves. Some techniques for elimi-
nating these errors were suggested, but it was clearly necessary
to obtain a precise mathematical estimate of these effects, so that
realistic error limits can be obtained for beam-foil data. We have
made an analysis of these cascade effects, and conclude that the
cascading fraction which produces such systematic errors can
be parametrized by a quantity which we define as the replenish-
ment ratio. This ratio takes into account both the relative popula-
tions of the cascading levels, and their lifetimes, which together
affect the reliability of analysis of the resulting decay curve.

We relate the fitted parameters of these cascade-affected decay
curves to the initial populations of the levels concerned. These
may be obtained only if the branching ratios and cascade schemes
are known, but can provide information about the excitation
mechanism. For second-order cascade schemes with electric-dipole
selection rules, there is a simple separation of the direct and
indirect cascading which permits the populations to be evaluated
in uncoupled closed formulae.

Finally, we consider velocity dispersion effects in beam-foil
decays. The velocity dispersion introduced by the foil interaction

1 Permanent address: Dept. of Physics and Astronomy, University of To-
edo, Toledo, Ohio, USA.

2 I,o(f) is the decay curve of the correlated level scheme, after uncorrelated
backgrounds due to unresolved line blending, random noise, etc. have been
subtracted. However, the apparent flat background due to very long lived
cascades is part of the level scheme, and should not be subtracted.

3 If I,4(¢) is instrumentally integrated over some finite time interval A,
the fitted value of C j will be averaged in a lifetime dependent manner, and
will differ from the true value by a factor C, (true)/C, (fitted)=(ocht/2)/
sinh (ocfAt/Z). The corrected values C; (true) should be used in all expres-
sions developed here.
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with the beam is found to be negligible at most beam energies to
an accuracy of better than 3% in the measured decay time. The
analysis indicates that even for ejected foil-particles of large
velocity dispersion, some decay-time analysis is possible. -

2. Cascade contributions to decay curves

The radiated intensity corresponding to a transition from a level i
to a level f is given (in photons/sec) by

I(t) = N(t) Ais )

where A;; is the atomic transition probability and N(¢) is the
instantaneous population of the upper level. For a consecutively
labeled cascading level scheme, the populations are governed
by a set of coupled differential equations of the form

ANpJdt= S NO) Ay NoD) am @

i=m+1

where «,, denotes the inverse mean life of a level m, obtained by
summing A,,; over final states f. For notational simplicity in this
section, we shall label the transition studied as from an initial
level 1 to a final level 0, with »—1 cascading levels. It can be
shown [3] that Eq. (1) and Eq. (2) imply an intensity variation
given by?

L = 2 C;exp(-a;1) 3)

j=1

where the C;# are defined for some arbitrary time #=0. When
a mean life 1/« is determined by curve-fitting techniques,
measured values for I,,(¢) are fitted to 2n parameters, correspond-
ing to the C; and the o;. Since only «; is desired, the other 2r —1
parameters are often only a hindrance, and are seldom re-
ported unless specific cascade lifetimes are identifiable. It will
be shown below how all 2# parameters can be utilized to infer (1)
the degree of cascading present, and (2) the initial level populations
for second-order decay schemes.

2.1. Quantitative cascade contributions: the replenishment ratio

The determination of «, would be easiest if there were no cascade
contributions (i.e., C;=0 for j=1). Further, the degree of this
contribution is not readily apparent from the raw fitted para-
meters, as it is a-correlated effect of the coefficients and mean
lives of all the contributing levels. We develop below an expres-
sion which combines the C; and the «; in'a way which quantita-
tively reflects their contributions -to the measurement of «;.

To study the population flow for level 1, we can rewrite Eq. (2)
in terms of intensities by application of Eq. (1), and apply it to




the 1--0 transition to obtain
n
(dIIO/dt)/AIO = 12211'1(0 - Im(t)/Alo (4)

The right-hand side of this equation can be interpreted as the
difference between the “birth” rate and the ““death” rate, where
the “births” are due to cascade repopulation (CR) and the “deaths™
are due to decay depopulation (DD). Notice that DD is the total
depopulation of the level, and not merely the part branching to
the particular decay under observation. We therefore define

CR-= i L(D) ®
DD =o, LAy, (6)

The dynamic behaviour of the level population can be completely
described in terms of the birth-to-death ratio, which we hence-
forth denote as the replenishment ratio, R=CR/DD.

If CR< DD, then R<1, the level is essentially unreplenished,
and the intensity will vary (at least until R rises) as a single expo-
nential of mean-life 1/«;, and cascade effects are negligible.
If CR=DD, R =1, and replenishment causes the intensity varia-
tion to be strongly multi-exponential, and cascade effects are large.
If CR>DD, R>1, so that the level is over-replenished, the
intensity will show a “‘growing-in”, and cascade effects will domi-
nate (until cascade levels become depleted). The replenishment
ratio is therefore a very sensitive and very interpretable mea-
sure of the degree of cascade effects. Forming this ratio, we
obtain

(Rt) = A101§:2 Iil(t)/% Im(t) Q)

This can be written entirely in terms of I,,(¢) using Eq. (4)
R(2) = [t 1o(2) +dIo/dt]/ oy I(2) ®

In this form R(¢?) can be written directly in terms of curve-fitted
parameters by substituting Eq. (3) into Eq. (8) to obtain

RO)= 3 (=) exp(=5 )] 3, Gy expls ©

Notice that Eq. (9) expresses the replenishment ratio solely in
terms of fitted parameters, is independent of the details of the
decay scheme?, and should be the same for all transitions from the
same upper level. Cascade contributions can be completely speci-
fied by a plot of R(z) versus ¢ over the interval of measurement.
Often, long-lived cascades will cause the replenishment ratio to
have a smooth monotonic increase, in which case the cascading
is well described by the minimum replenishment ratio, evaluated
at t=0, and we obtain

n n
RO)= 3, -o/x) G 2 G (10)
For a two-exponential fit this is
RO) = (1 — xy/ 1) Co/(C1 +C2) an
and for a three exponential fit it is
R(0) =[(1 — s/ 0t) Co +(1 — et/ 1) C5] (C1 + Co+ Co) a2

Most experimental results to date fit no more than three expo-
nentials. However, at least one measurement [4] has utilized

1 Provided, of course, that the appropriate number of exponential terms are
included in the fit.
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Table 1. Cascade decomposition of a pulsed electron beam measure-
ment of the 2pslss tramsition in Ne I (J. L. Kohl, Ph.D. thesis,
University of Toledo, Toledo, Ohio, 1969). These coefficients
and meanlives infer a replenishment ratio of 0.54

Term j C; 1/e¢; (ns)
1 1 400 19.5
2 3000 195
3 2500 29.6
4 555 35
5 460 68
6 170 59
7 74 58
8 69 235
9 86 140

10 28 158

11 42 203

12 29 175

13 11 148

information from the decay curves of the cascade levels in the
analysis of a neon transition to reduce the number of free para-
meters in a 13 exponential fit from 26 to 3. The exponential
coefficients and mean lives are presented in Table 1. The replenish-
ment ratio for this measurement is 0.54, indicating that, initially,
cascades were replenishing about one of every two decays, a fact
not easily deduced from the raw fit parameters.

The replenishment ratio can also be determined in measurements
not employing curve fitting methods. If relative intensities are
measured, the ratio can be formed directly with Eq. (7). If excita-
tion is continuous, or modulates about some level, excitation cross-
sections and mean lives can be used to determine a secular equili-
brium value of the ratio.

2.2. Level populations from curve fits for second order cascade
schemes with electric-dipole selection rules

Although the presence of cascade level populations can be detri-
mental to mean life measurements, these populations can provide
a valuable study beyond this context. The relative populations
present provide information concerning the excitation mechanism,
and can be studied as a function of source conditions (beam
energy, foil material and thickness etc.). The population distribu-
tions with a collisionless sample will generally be quite different
from the Boltzmann distribution, and may often be inverted,
since radiative de-excitation tends to build up populations in the
longer-lived higher-energy states.

It is possible to relate the fitted parameters C,; and «; to the
initial population ratios, if the cascade scheme and the branching
ratios A4;,/«; are known [3]. Further, if the mean lives 1/«; are
also known, the relative level populations can be determined by
fitting the data to the C;, which is a linear fit, and can be made
analytically (as opposed to the iterative search routines which
must be employed in fitting the «;). Further constraints can be
deduced from the fact that the population ratios must be positive
numbers.

In general, the relationships between fitted parameters and
populations become quite complicated when higher order cas-
cading is present. However, a striking simplification occurs if we
restrict our considerations to second order cascading (i.e., we
neglect cascades into level 1 which proceed by three or more
steps). Electric-dipole selection rules then divide the cascade levels
into two distinct types; direct cascade levels, which have transi-
tions to level 1, and indirect cascade levels, which have transitions
to intermediate levels which have direct transitions to level 1.

Physica Scripta 2



218 L. J. Curtis et al.

Selection rules forbid a level from undergoing both direct and
indirect transitions to the same level. With this distinction, each
direct level d will have a coefficient of the form

_ Ny©) A Ay

(“1 ~otg)

Ni'(o) Ai’d Ad1 Alo

v (g —ae) (i —0g)

C, (13)

where i’ is summed over those indirect levels which have transi-
tions to d. Similarly, each indirect level i will have a coefficient

M(O) Aid’ Ad’l Alo
C, =3t ma T
' % (051 - “i) (Otd' - 061‘)

14

and here d’ is summed over those direct levels which connect level
i to level 1. The sum of all coefficients at time =0 must yield the
initial intensity, so we have

jé: Cj =N1(0) Alo (15)

Eqgs (13), (14) and (15) can be solved simultaneously to obtain

NGO G 1

-t 16
N,©0) !Z G Gy 1o
and
N,0) _ Ca [(Otx“dd) Aia Q] 17
NI(O) Z Cj Ad1 " i (Otd—di') G, Cy an

i

where
G;= [g Aid'Ad'l/(“d' - Zli)]/(% —a;) (18)

where i’ is summed over all levels which have transitions into d,
and d’ is summed over all levels which connect i (or i’, where
appropriate) indirectly with 1.

As an example of the application of these formulae, consider a
sample of hydrogenic atoms, excited so as to be populated in
the n=1, 2, 3, and 4 levels. The intensity of the Lyman « line
(1s —2p) will consist of 7 exponential terms, corresponding to
the lifetimes of the 2p, 3s, 3d, 4s, 4p, 4d, and 4f levels. Transition
probabilities for hydrogen are calculable and well known [5],
and the contributing values are summarized below. The calculated
meanlife of the down transition is «,,=6.25, and the meanlives
and transition probabilities of the direct transitions are (in 108 s-1)

55 =0.063  Aj, ,,—0.063
#50=0.64 Ay .,—0.64

%5, =0.043 A, 5,—0.025
%q=0274  Aug1,=0.204

and for the indirect transitions

o, =0.81
04;=0.137

A4p,38=0‘030
Ay 34=0.137

A4p_ 3d =0.003

The computations can easily be done by hand in a few minutes.
First we evaluate G,, and G, These determine the indirect level
population ratios, for which we obtain

Nep(0)/ Nop(0) =(—394) Cy,/ 2C;
N, 4f(0))/ N, 2p(0) = (35) C4[/ ch

We then apply these to compute the direct level population ratios
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Fig. 1. Intensity decays calculated from Eq. (21). The time-axis is in units
of the expected decay time. The decays are normalized to unity at the time
zero, and cross again at approximately 5.5 mean lives.

N3(0)/N,,(0)=[(98) C3, +(16) C, )/ ZC;
N3a(0)/ Nop(0) =[(9) Csq+(7) Cap +(10) Cy)/ ZC;
N,(0)/N.,(0) =(248) C,i/ZC;

N, 4d(0)/ N, zp(o) = (29) C«zdi z C;

Population ratios can thus be determined from a 7 parameter
linear fit of intensity data to the C;. In addition, from an examina-
tion of these equations we can infer further constraints. Notice
that a positive fitted value for C,, would clearly be non-physical,
as it would require a negative initial population. Notice also that
any significant coefficient for either the 4p or the 4s level would
imply a huge corresponding initial population ratio, so one might
ignore these levels, and fit the data to the remaining 5 linear
parameters. Since the expressions used here all involve only ratios
of transition probabilities, dependences on nuclear charge will
cancel, and the expressions are valid for all hydrogenic atoms.

3. Velocity dispersion effects in beam-foil decays

In the analysis of the light intensity decays obtained in beam-
foil experiments, it is generally assumed that the emitting
particles are all travelling at the same velocity, perpendicular to
the observation direction. However, it is known that the foil
interaction itself produces a velocity dispersion in the beam.
We shall consider two consequences of this velocity dispersion
on the intensity decay.

Measurements of the energy distributions of particles after
passing through thin carbon foils [6] indicate two important
effects. One is an energy loss, and the other is a straggling of the
energy distribution. The former is well understood theoretically



Table II. Effective decay times

Y =4 tminu' fmaxb
0.0 1.00 1.00
0.1 0.99 1.01
0.2 0.95 1,03
0.3 0.90 1.07
0.4 0.85 1.12
0.5 0.79 1.17

% tin is derived from the slope between x=0 and x=1 in Eq. 21).

tmax 1S derived from the slope between x=4 and x=35 in Eq. (21).

[7]1 and experimentally [6], and is generally taken account of in
accurate beam-foil experiments [1]. The straggling, around the
most probable energy loss, is not as well understood [7], and
there are few experimental results available [6, 8]. It is the result
partly of the statistical nature of the scattering process in the
foil, and partly because of the angular dispersion introduced by
the scatterings. This angular spreading, which has recently been
measured [9-11] and theoretically calculated [12, 13], is also an
important factor in determining the velocity distribution observed
in the beam-foil decay time measurements.

We shall assume that we are observing a single exponential
decay of unit decay time. That is, for particles of velocity v,
the light intensity observed at a distance x is I(x) =I(0) exp ( — x/v),
where I(0) is the intensity observed at x=0.

It has been shown [6] that the electronic scattering in the foil
gives rise to an approximately gaussian distribution of velocities,
and the closer impact nuclear scattering produces a low energy
tail to this distribution. However, for the energy ranges used in
beam-foil experiments, the electronic scattering dominates, and
it is a good approximation to assume a gaussian velocity distri-
bution about a normalized most probable velocity v=1. Then,
the number of atoms with a velocity v along the axis is N(v) «
exp [ — (v —1)?/4%], and the observed intensity is

z(x)“f eIt gD g (19)

0

where 4 is a measure of the beam-straggling.

The angular spreading of the beam can also be well represented
[10] as a gaussian spread into a solid angle d2. Thus, at an angle
0, the angular distribution f(9) has a velocity v cos § along the
beam-axis, and the expected light intensity at a distance x becomes

o0 /2

I(x)ocf dv f 2rc sin § dg e 3/? 0080 g 0%Y* g (v -1 A2 20)
0 1]

where v is a measure of the angular divergence.

Table III. Polynomial fits to a decay curve with w=4=0.5

x e I(x)* I'(x)® x)°

0.0 1.00 1.00 1.00 1.00

1.0 3.68-1% 2.83-1 3.10-1 3.28-1
2.0 13.53-2 9.72-2 10.30-2 10.81-2
3.0 4.98-2 3.68-2 3.70-2 3.62-2
4.0 1.83-2 1.49-2 1.46-2 1.22-2
5.0 6.74-3 6.30-3 6.23-3 4.15-3
6.0 2.48-3 2.78-3 2.78-3 1.42-3

% Eq. (21), with y=4=0.5.
% Eq. (22).
¢ Eq. (23), with p=0.5.
The notation p— g denotes p-10-9,
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Equation [20] assumes that all particles have the same prob-
ability of emitting the photons of interest, independent of their
velocity and direction. This may not necessarily be true, particu-
larly when considering very wide velocity distributions such that
4, w<1 are not good assumptions. Also, we assume that the
angular divergence remains within the view of the photon-col-
lecting optics.

If the angular spread is small, then sin 6 =, cos 6 =1 —6%/2,
and we can integrate over angles to give

~z/v e~(v—l)”/A“

I(x)=wa av @
[1]

1+xy®[20

where N is a normalization factor.

Equation (21) has to be integrated numerically. Fig. 1 shows
some results for different values of y and 4. Measurements [6, 8]
of v and 4 have shown them to be approximately equal for He,
N, and Ne at energies up to 50 keV for C-foils of 5-10 ug-cm=2
Thus, we have chosen the cases y=4. For 80 keV ¢0+ through
a 7 ug-cm~2 C-foil, we find that ¢ =A=0.1; then, the change in
the effective decay time is less than 1%, as seen in Table II.
This change is surprisingly small, and it is observed that even
for y=4=0.5, corresponding to a full half-angular-width of
46°, the decay time does not vary by more than 20%.

It is noted that the dispersion-affected curves decay faster for
small x, and slower for large x, than the expected decay rate. This
is observed in Fig. 1 and Table II, and for equal y, 4 the decays
all intersect at approximately 5.5 decay times from x=0.

Denis et al. [14] have pointed out that the decay of a level which
has a cascade of similar lifetime can be approximated by a poly-
nomial coefficient on the decay exponential. Table IIT shows
that the decay with y=4=0.5 is also well approximated by the
polynomial

I'(x) = (1 —0.19x+0.035x*)e~" (22)
and more approximately, for small x, by
I"(x) = (1 +y2%x/2)~t-e " 23)

Equation (23) is obtained by evaluating Eq. (21) at its principal
value.

We conclude that effects of velocity dispersion on decay curves
in beam-foil measurements are negligible to the present state of
analysis. Thus, at Stockholm, the highest values of w, 4 which
have been used are y =4 =0.15 for K at 140 keV, for which
Table 11 shows a less than 3% effect on the measured meanlives
[15]. At higher energies the effects become even smaller.

However, velocity dispersion effects are expected to be large
for foil-ejected particles [16]. A preliminary application of Eq. (21)
to such intensity decays has shown an excellent fit to the data
out to 2-3 decay times, with ¢ =0.6 and 4 =0.8. This corresponds
to a half-angular width of 0.5 rad., and a velocity halfwidth of
0.66. At further distances from the foil, an expected high velocity
wing gives a tail to the intensity distribution.
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