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Abstract

A relativistic extension is made of methods by which intermediate coupling
amplitudes are deduced from measured energy levels and combined with
measured lifetimes to obtain transition probabilities within a multiplet
between two pure configurations. A procedure for incorporating the rela-
tivistic j-dependence of the radial transition integral into the empirical data
reduction is presented and applied to the isoelectronic formulation of the
2s2-2s2p transitions in the Be sequence and the 6s26p>—6s26p7s transitions
in the Pb sequence.

1. Introduction

The multiplet of transitions that connect two configurations
can be characterized, in the absence of configuration inter-
action (CI) effects, by a set of intermediate coupling (IC)
amplitudes. In the nonrelativistic approximation, these
amplitudes can be used to specify the energy level separa-
tions, relative line strengths, and magnetic g-factors of the
system. Empirical methods have been developed (e.g.
[1-15]) whereby the IC amplitudes are deduced from mea-
sured spectroscopic energy separations, used to predict rela-
tive line strengths and branching ratios, and combined with
measured lifetimes to yield transition probability rates. The
basis of these methods is the nonrelativistic Schrodinger for-
mulation, in which the radial electric dipole (E1) transition
integral has a single multiplet value. This is an overall multi-
plicative factor, and cancels when ratios are considered. In
the relativistic Dirac formulation, the radial wavefunctions
and E1 transition integrals acquire a spin dependence [16]
that must be incorporated into the specification of line
strengths and branching ratios from IC amplitudes. We
report here a relativistic extension of these methods with
applications to two specific problems: the isoelectronic sys-
tematization of line strength data for the 2s®-2s2p reso-
nance and intercombination transitions in the Be sequence;
and the empirical specification of the branching fractions
and transition probability rates of the 6s26p2—6s26p7s tran-
sitions in the isoelectronic ions PbI and Bi Il

2. Calculational formulation

Formulations of empirical methods for incorporating IC
amplitudes deduced from spectroscopic energy level data
into the systematization and predictive parametrization of
transition probabilities have been extensively discussed and
applied elsewhere [1-14]. These methods are based on the
nonrelativistic Schrédinger equation, using an LS-coupling
angular basis set and radial wavefunctions that are indepen-
dent of j. Here we reformulate these calculations using the
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relativistic Dirac equation, with a jj-coupling basis set and
j-dependent radial wavefunctions. This yields a more general
formulation involving two j-dependent radial matrix ele-
ments, and the nonrelativistic results are recovered when
these two radial matrix elements are equated.

Although this formalism is quite generally applicable, the
approach will be demonstrated here for the examples of the
sp and p? configurations. These configurations provide a
particularly simple case, since the singlet-triplet mixing
couples no more than two levels, hence the normalized
mixing amplitudes can be expressed as mixing angles. These
nonrelativistic methods have also been applied to the p?
configuration [11], for which the mixing amplitudes com-
prise a matrix array, and a similar relativistic extension can
be made for such cases.

2.1. Mixing angle formulation

We denote the IC wavefunction by ¥,;.;,; and the jj basis
states by | ;17 J). In order to make comparisons with results
obtained in the LS basis, the mixing angle relative to the jj
basis will be written as @,-0,, where @, is the jj-limit value
of the mixing angle 6; which is defined in the LS basis.

For an sp configuration there are four levels (denoted in
LS notation as *P3, 3PS, 3PS, !P$) which can be written as

lI’su/z)p(l/z)o = | $12 P12 0>, 1)
Ws(l/Z)p(l/Z)l =cos (@, — 01”31/2 P1/21>

— sin (@, — 6,)| 12 P3/21>s @
Y222 = 1812 P32 2, 3
Y1/2)p3/21 = Sin (O — 6,)| $1/2P1,21D

+ cos (@, — 6,)] S1/2 P3/21>- )]

For a p? configuration there are five levels (denoted in LS
notation as 3P,, 3P,, 3P,, 'D,, !S,) which can be written
as

q’p(l/Z)p(l/Z)O =cos (@ — 0y)| P1/2P12 0>

—sin (@ — eo)lps/z P32 0>, &)
Yo mp3/21 = | P1j2 P32 10, (6)
¥ o1/2pp3/202 = €08 (O, — 6,) ] Pi1/2D3/22)

—sin (@, — 6,)| P3/2P3s2 25, @)
lIlp(l/Z)p(s/Z)z = sin (@, — 0,)| P12 P32 2>

+ cos (0, — 0,)] P3/2 P32 25, t]
¥ o3/21p03/200 = sin (@ — 6,)] Pi/2P12 0>

+ €08 (O — 00) | P32 P32 0D &)

The s* configuration provides a convenient transition
partner for the sp, and has only one level (in LS notation



Relativistic Empirical Specification of Transition Probabilities from Measured Lifetime and Energy Level Data

'So)
(10)

Since the mixed configurations contain more energy level
intervals than Slater parameters, the mixing angles can be
obtained from the measured spectroscopic energy values in
an overdetermined manner. This overdetermination can first
be removed by considering the average energy ¢; for each
value of J = 0, 1, 2, 3, and then used to test the purity of the
configuration by noting the accuracy with which that for-
mulation reproduces the measured J-splitting.

In terms of these J-centroid energies, the mixing angles
can be obtained for the sp configuration using

lIls(l/z)su/z)o = $1/2812 0>.

&, — 3&; + 2¢,

cot (20,) = 21T % (11)
\/5(82 — &)
and for the p? configuration using
10g, — 21 11
cot (20 = — —2—=at b (12)
4./2(5¢, — 3e; — 2¢0)
5 —8
cot (20,) = — ——2 F 38 —88% (13)
2./2(5e, — 3¢, — 280)
The one electron radial integrals will be denoted as
R = <S1/2|7'|P1/2>, (14)
Rz = <S1/2|r|P3/2>~ (15)

2.2. Transitions between s* and sp configurations
Using the wavefunctions from eqs (1)-(4) and eq. (10)

FaayasarzolPl Paarzparzn?
- \% [R,, c0s (6, — 6;) — /2Ry sin (O, — 8,)],
(16)
¥zl Psa ez
= —\% [R,, sin (©; — 0,) + /2R3 cos (@; — 0,)].

a7

Using tan @, = 1/\/-2_ and trigonometric reduction formu-
lae, these can be rewritten in the convenient form

< TS(I/Z)S(I/Z)O ”r“ Ts(l/Z)p(l/Z)l >

R3, + 2R, .
= /L_;J sin (0; — &),

< qls(l/Z)s(l/Z)O ”I‘ ” Ws(l/l)p(3/2)l>

[R?, + 2R?
— 11_3__1_3 cos (8, — &),

where

(18)

19

R,,—R
t = 2 13 11‘
an ¢ ‘/—2R13+R“

Notice that in the nonrelativistic LS coupling limit where
R = R,; =R, 3, this becomes

{*So|lr|*P,> = R sin 6, 21
{*Sollr['P;> = R cos 6, 22)

which is the form that was used in empirical formulation of
Refs [1, 3].

(20)
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2.3. Transitions between p* and sp configurations

For the p? — sp manifold many transitions are possible. For
brevity, we shall restrict consideration to those involving
¥ 1/2)p(1/201» Which occurs in the application treated below.
(For the Pb-like 6p®~6p7s transitions, the upper level 3PY is
chosen because the *Pg is unbranched whereas the *P$ and
!'P$ have branches to other configurations.) Using the wave-
functions of eqs (5)—(9) and eq. (2), substituting tan @, =
cot @, = 1/,/2 and using trigonometric reduction formula,
these integrals become

<Tp(l/2)p(l/2)0“r”¢5(1/2)p(1/2)1>
20
= — >3£ [(Ry3 + 2R,,) cos 8, cos 8,
— (2R3 + R,,) sin 6, sin 8,

+ \/E(Rm — Ry,) sin (6, — 6,)],
<osapi 171 s 2300172010

(23)

15 .
= BSC [2R,3 + Ryy)cos 0, + \/E(Rm —R,,)sin 6,],

24
{¥osmpa2 1 Poa zip21>
= $[(4R,5 + 2R,,) sin 6, sin 6,
+ (4R;3 — R, ) cos 6, cos 0,
- \/E(Rls — Ryy) sin (6, — 6,)],

<Wp(3/2)p(3/2)2 “r” Ws(l/z)p(l/2)1>
= — %[(4R13 + 2R11) Sin 01 (o101 02

—(4R,3 — R;;)cos 8, sin 0,
+ \/E(Rm — R,;) cos (8, — 6,)],

<Wp(3/2)p(3/2)0 “r” Ws(l/Z)p(1/2)1>

(25)

(26)

20
= — 535 [(Ry3 + 2R,,) sin G, cos 8,

+ (2R,5 + Ry,) cos b, sin 8,

— V2(Ry5 = Ryy) cos (8 — 6,)] @7
Notice that in the nonrelativistic LS coupling limit where
R = R, = R,; these become

CPolrPP) = — (/20 R cos (8, + 6,), (28)
Py PP = /15R cos 8, (29)
(PP, |r|*P> = 5R[2 sin 6, sin 8, + cos 8, cos 6,], 30

D, |r|*P}> = —5R[2 sin 6, cos 8, — cos 0, sin 6,], (31)
(SlirlPPSY = — /20 R sin (8, + 6,). (32)
which is the form that was used in the empirical develop-
ment of Ref. [4].

2.4. Line strengths and branching ratios

The matrix elements can then be used to specify the line
strength factor §;,

Su = [K¥ilr| ¥ % (33)

This can then be used to specify the transition probability
rates A;,

1265.38
gi Aik(ns_l) = [ :|Sik

DTN (34)
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which are related to the lifetime 7; through the branching
fractions BF;, by

BF; = Ay, (3%)

3. Applications

In order to investigate the significance of these relativistic
corrections, we have carried out calculations of the quantity
R,;/R;; for a variety of systems using the multi-
configuration Dirac-Fock program GRASP [17]. These
results indicate that the ratio is most likely to deviate from
unity in a situation where the integral is heavily affected by
cancellation effects. However, even if the ratio differs only
slightly from unity, the corrections can be important if the
formalism is to be applied to a situation for which the
singlet-triplet mixing is small, but still dominant over per-
turbations from mixing with other configurations.

We have therefore chosen to present one example from
each of these situations. The first involves the Be isoelec-
tronic sequence where £ is small, but not negligible com-
pared to 6,. The second involves the Pb isoelectronic
sequence, where the E1 transition matrix is affected by can-
cellation, and exhibits a value for R,;/R,, that differs sub-
stantially from unity. Both systems have been shown to be
virtually free of CIL.

3.1. Line strengths for Be-like 2s*-2s2p transitions

It has been demonstrated that the measured line strengths
of the resonance and intercombination transitions
ns? 'So-nsnp 'P,; and ns? !Sy-nsnp 3P, in alkaline earthlike
systems can be isoelectronically linearized by the use of eqs
(21) and (22). If the measured line strengths are denoted by
S(Res) and S(Int), then eqs (21) and (22) permit their exposi-
tion in the form of the reduced line strengths S(Res) and
S,(Int), defined as

S.(Res) = S(Res)/cos? 8, (36)
S.(Int) = S(Int)/sin? 0,. (37

With this reduction, the data have been observed in many
cases [2-8] to conform to a linear relationship

Z2S, =8, + b/(Z — C) (38)

where C is an empirically chosen screening constant and S,
is the corresponding hydrogenic value of the line strength.

An exposition of the data for the 2s2-2s2p transitions in
the Be sequence (taken from Ref. [3]) is shown in Fig. 1(a).
Here the resonance and intercombination lines follow a
linear behaviour that appears to converge to a value at high
Z that corresponds to

So = 3(\/3 cos ¢ — sin $)2S;, = 38.5, (39)
where Sy = 54 is the 2s-2p line strength for hydrogen and
¢ = 13° is the asymptotic 2s*>-2p* mixing computed [3] by
diagonalizing the matrix of the Coulomb repulsion using
standard Slater-integral methods and hydrogenic wavefunc-
tions.

The absence of other significant effects of CI in this
system is evidenced by the high degree of reliability with
which the mixing angles predict the overdetermined levels of
the system [3]. Thus the fact that the resonance and inter-
combination have slightly different slopes suggests that the
nonrelativistic assumption of a j-independent radial matrix
element should be reexamined in the context of the develop-
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Fig. 1. Reduced line strength vs. reciprocal screened charge for the Be-like
252-2s2p resonance and intercombination transitions with () nonrelativis-

tic reduction [eqgs (36) and (37)] and (b) relativistic reduction [eqs (40) and
“41)].
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ment presented here. If eqs (18) and (19) were instead used
to define the reduced line strengths, egqs (36) and (37) would
become

S.(Res) = S(Res)/cos? (6, — &),
S/(Int) = S(Int)/sin (8, — &).

(40)
(41

To test this procedure, we have computed the ratio R,;/R;,
for this system using the Dirac-Fock code [17]. The values
obtained for ¢ using eq. (20) are shown in Fig. 2, together
with the empirical singlet-triplet mixing angle 6, upon
which the exposition in Fig. 1(a) was based [3]. These quan-
tities were used to produce a revised exposition of these
data which is shown in Fig. 1(b). The data sources used here
are the same as cited in Ref. [3]. Figure 1(b) shows that the
use of these simple single configuration Dirac-Fock esti-
mates for the R,;/R,, factors has caused the trends of the
resonance and intercombination transition data to merge
into a single linear trend. The fact that the resonance and
intercombination data merge in this exposition suggests that
measurements of one of them can be used to predict the
other. Since resonance transitions tend to be very short-
lived at high Z and intercombination transitions tend to be
very long-lived at low Z, their common formulation is pre-
dictively useful.
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3.2. Branching fractions for Pb-like 6s26p*>—6s*6p7s
transitions

The 6s26p>-6s6p7s transitions near the neutral end of the
Pb isoelectronic sequence provide an example in which both
the upper and lower configurations are relatively free of CI,
but both are significantly mixed by IC. The lack of CI in
these levels for PbI is evidenced by measurements [19] of
their magnetic g-factors, which are in very close agreement
with IC-based predictions. Similarly, the lack of CI in these
levels for Bill is evidenced by the agreement that is
obtained between the measured energy levels and the values
predicted by the overdetermined mixing angles [4]. A
number of studies have been published for PbI [12] and
Bill [4, 13, 14] in which branching fractions are computed
for IC mixing angles and used to deduce transition prob-
ability rates from measured lifetimes [4, 23].

The E1 transition moments in this sequence are signifi-
cantly affected by cancellations in the integral. This can be
seen from a cancellation exposition based on the nonrelativ-
istic Coulomb approximation [24] which is shown in Fig. 3.
In this formulation, the conditions of cancellation can be
represented by nodal lines in a space constructed of the
effective quantum numbers of the upper and lower states.
The degree of cancellation for a physical ion can be esti-
mated from the proximity of its effective quantum numbers
to a node when exhibited on this plot. Figure 3 displays the
effective quantum numbers of the transitions from the
6p>°Py, *P,, °P,, 'D, and 'S, lower levels to the 6s6p 3PS
upper level for PbI and Bill. Although the physical points
do not fall directly on a node (which would imply complete
cancellation) their proximity to it suggests that small differ-
ences between the j-dependent wavefunctions could lead to
large differences in the integrand.

We performed Dirac-Fock [17] calculations of R,;/R,,
for this sequence, obtaining the values given in Table I for
Pbl and Bill. For ions heavier than BilIl the values
increased approximately as (Z — 81)%, reaching 1.551 at
UXI. Table I also lists values for 6,, 6, and 0, deduced
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Fig. 3. Quantum defect plot for 6p>-6p7s transition in PbI and Bill.

Large cancellation effects are expected when the experimental data (O) are
near a predicted nodal line.
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from measured energy level data, as well as lifetime mea-
surements for the 3PS level.

Tables II and III compare the results of nonrelativistic
[eqs (23)-(27)] and relativistic [eqs (28)—(32)] calculations of
the branching fractions for PbI and Bill. Consistent with
the deviation from unity of the quantity R,;/R,,, there are
significant differences between the relativistic and nonrela-
tivistic calculations. As shown in Table II, branching frac-
tion measurements are available for the Pb1I case, and these
are in much closer agreement with the relativistically com-
puted branching fractions. For this reason we have adopted

Table 1. Empirical mixing angles, Dirac—-Fock integral ratios,
and measured lifetimes.

Spectrum 6,() 64() 0,() R;,/Ry* (ns)
Pbl 39.82° —22.16° 32.18° 1.4590 5.85 +0.20°
Bill 42.84¢ —24.16% 33.15¢ 1.4224 1.56 + 0.15¢

* MCDF, this work.

® Energy levels from Wood and Andrew, Ref. [18].

¢ Giers et al., Ref. [23].

¢ Energy levels from Crawford and McLay, Ref. [21].
¢ Energy levels from Kolyniak et al. Ref. [20].

f Henderson et al., Ref. [4].

Table II. PbI branching fractions and transition probability
rates for the P upper level in the 6s*6p*~65*6p7s multiplet

Transition  A(A)® BF(N)® BF(R)® BFM)®  A(s™Y)
PP 283389  0.489 0310 0.324 0.0529
P, 364061  0.128 0.166 0.188 0.0284
3P,- 405895  0.381 0.520 0.500 0.0889
D,- 723096  0.0029 0.0040 0.0005  0.00068
1g5,- 17181 7x107%  3x1075  — 6x10°¢

* Vacuum wavelengths.

® Nonrelativistic, R,4/R,; = 1.

° Relativistic, R, 3/R,; = 1.4590.

¢ Measured, Ref. [22].

¢ Relativistic, using BF(R) and t = 5.84 ns.
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Table III. Bill branching fractions and transition probability
rates for the P} upper level in the 65*6p>—6s>6p7s multiplet

Transition MAy BF(N)® BF(R)® A(ps ™1y
3p,-°P3 1436.83° 0.43 0.25 0.20

3p - 1777.11° 0.12 0.16 0.13
3p,— 1902.31° 0.44 0.59 047
p,~ 2804.2° 0.004 0.005 0.004
15~ 39333 0.0002 0.0009 0.0002

* Vacuum wavelengths.

® Nonrelativistic, R, ,/R;; = 1.

° Relativistic, R, /R, = 1.4224.

4 Relativistic, using BF(R) and 7 = 1.56 ns.
© Reader and Corliss, Ref. [26].

f Wahlgren et al., Ref. [27].

the relativistic branching fractions for use with the measured
lifetime for computation of transition probability rates,
which are also given in Tables IT and III. On the basis of the
agreement between relativistic and measured branching
ratios in Pb]I, the transition probability rates for BiIl given
in Table III are probably an improvement over the nonrela-
tivistic values that were reported in [4].

Although spectroscopic data for the members of this
sequence past Bill are not available because of their nuclear
instability, the slowly varying behaviour exhibited by the
mixing angles and radial matrix ratios should permit a reli-
able extrapolation to these systems.

4, Conclusions

The relativistic formulation presented here provides an
extension of semiempirical methods which combine mea-
surements of the energies and lifetimes of atomic levels
through intermediate coupling calculations. In appropriate
cases this can improve the reliability of predictive data sys-
tematizations, and allow their application to additional
systems. Although the approach used here introduces theo-
retical values into an otherwise fully empirical exposition,
the application of the theoretically obtained correction
factor is merely a mapping factor between the measured
data and a linearizing exposition, and does not prejudice the
predictions toward ab initio values. Alternatively, in systems
for which lifetime measurements exist for a sufficient
number of upper levels within the multiplet, R,;/R,, could
be determined empirically.

The ability to obtain branching fraction estimates by
these methods is of importance, since almost no reliable
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branching fraction information is available for ions [25],
and these quantities are necessary for the determination of
transition probability rates and oscillator strengths from
lifetime measurements.
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