

• $S_{\mu}(ns-np) = \frac{3}{4}n^{2}(n^{2}-1)(2J+1)$

$$S_{ik} = \left[\frac{\lambda(A)}{1265.38}\right]^3 \frac{g_i B_{ik}}{T_i(ns)}$$

_

--- Johnson, Liu & Sapirstein, Atom.Data Nucl.Data Tables 64, 279-300 (1996).

$$\mathbb{Z}^{-}S_{H}^{n}(\mathbb{Z}) = \mathbb{Z}^{-}S_{H}\left[I - \sum_{i=1}^{l} \alpha_{i}(\alpha \mathbb{Z})^{2i}\right]$$

TABLE I. Constants for relativistic hydrogelike line strengths.

Transition	S _M (1)	a 1	6 2	a 3	a4	a 5
$2s_{1/2} - 2p_{1/2}$	18	5/6	-1/48	1/96	7/768	11/1536
$2s_{1/2} - 2p_{3/2}$	36	1/3	0.110187	0.059476	0.037032	0.024925
$3s_{1/2} - 3p_{1/2}$	108	7/12	5/144	7/288	37/2304	53/4608
$3s_{1/2} - 3p_{3/2}$	216	19/72	0.139267	0.082219	0.050840	0.033291
$4s_{1/2} - 4p_{1/2}$	360	9/20	3/64	17/640	87/51 20	123/10240
$4s_{1/2} - 4p_{3/2}$	720	103/490	0.147237	0.093466	0.05885 3	0.038459
$5s_{1/2} - 5p_{1/2}$	999	11/39	29/600	31/1200	157/9600	22 1/192 09
$5s_{1/2} - 5p_{3/2}$	1899	9/50	0.1 500 12	0.100133	0.064068	0.041970

New platting parameter

$$\frac{\mathbb{Z}^2 S}{1 - \sum_{i}^{2} a_i [\mathbb{A}(\mathbb{Z}-C)]^{2i}} \cong \mathbb{Z}^2 S_{\mathbb{H}} \left[\mathbb{A}' + \frac{B'}{(\mathbb{Z}-C)} \right]$$

٩

$$S_r(Res) = \frac{S(Res)}{\cos^2\theta}$$
; $S_r(Int)$

$$S_r(Int) = \frac{S(Int)}{\Delta in^2 \theta}$$

O determined from energy level data

$$S_{H} = \frac{9}{2} n^{2} (n^{2} - 1)$$

1.

 \sim

6

ns	np	Huyl	hwolfe PR 41	443 (193	52)
	3Po	3 PA G.W. 6	King PRJ.H. Van VI	cckp, PR	56 464(19)
³ P.	E-G- 44	0	0	0	
30	0	E- G- 4/2	0	μ_{z}/\sqrt{z}	
302	0	0	E ₀ -G4 + H4/z	0	
1 PA	0	$\mu_2/\sqrt{2}$	0	Eo+G	

The is diagonal in the representation

 $|{}^{8}P_{0}'\rangle = |{}^{3}P_{0}\rangle$ $|{}^{3}P_{4}'\rangle = \cos \theta_{4} |{}^{3}P_{4}\rangle - \sin \theta_{4} |{}^{4}P_{4}\rangle$ $|{}^{3}P_{2}'\rangle = |{}^{3}P_{2}\rangle$ $|{}^{4}P_{4}'\rangle = \sin \theta_{4} |{}^{3}P_{4}\rangle + \cos \theta_{4} |{}^{4}P_{4}\rangle$

With energies $|{}^{3}P_{0}\rangle = E_{0} - G_{1} - \mu_{1}$ $|{}^{3}P_{1}'\rangle = E_{0} - \mu_{1}/4 - \Delta$ $|{}^{8}P_{2}\rangle = E_{0} - G_{1} + \mu_{1}/2$ $|{}^{4}P_{1}'\rangle = E_{0} - \mu_{1}/4 + \Delta$ $\Delta \equiv \sqrt{(G + \mu_{1}/4)^{2} + \mu_{1}^{2}/2}$

The defermine the mixing angle

$$\cot 2\theta = \frac{4G_1 + \mu_1}{\sqrt{6}\mu_2}$$

$5s^{2} {}^{1}S_{0} - 5s5p {}^{1,3}P_{1}$ energy intervals

Energies relative to 4d¹⁰5s ²S_{1/2} valence correlation only

Many more crossings occur in the CV+V calculation at high Z, as the f correlation orbital becomes the spectroscopic 4f orbital in CSF's such as 4d⁹4f 5{s,p,d} *nl*

 $4d^{9}4f^{2}5{s,p,d}$

TABLE III. Results for the intercombination transition $5s^{2} S_0 - 5s5p^3P_1$. Parentheses indicate quoted uncertainties in the experimental values as propagated from Table I.

				A _{ik} (ns	⁻¹)		
			MC	DHF ⁴	MC	CHIE [®]	
Zion	λ (Å)	Expt.	Coulomb	Babushkin	Coulomb	Babushk in	SE°
48 Cd	3262	0.000418(7)	0.000348	0.000343	0.000449	0.000356	0.000419
49 In	2307	0.0023(2)	0.00212	0. 00197	0.00244	0.00210	0.00210
50 Sn	1812		0.00676	0.00606	0.00701	0.00649	0.00614
51 Sb	1 499		0.0154	0.0142	0.0158	0.0147	0.0137
52 Te	1282	0. 025(6)	0.0304	0.0279	0.0310	0.0290	0.0261
53 I	1120	0.041(2)	0.0535	0.0490	0.0539	0.0509	0.0445
54 Xe	966	0.071(4)	0.0062	0.0793	0.0868	0.0822	0.0702
55 Cs	896		0.132	0.120	0.131	0.125	0.104
56 Ba	814		0.189	0.175	0.189	0.180	0.148
57 La	7 46		0.256	0.256	0.263	0.251	0.202
58 Ce	688				0.352	0.337	0.268
59 Pr	637				0.460	0.441	0.346
60 Nd	593				0.586	0.563	0.439
61 Pm	554				0.730	0.705	0.547
62 Sm	518				0.866	0.860	0.677
63 Eu	4 9 4				0.789	0. 869	0.781
64 Gd	465				1.17	1.21	0.950
65 Tb	439				1.45	1.45	1.12
66 Dy	417				1.73	1.70	1.31
67 Ho	401				2.04	1. 96	1.47

*Biémont et al. [15].

^bThis work, theoretical.

"This work, semiempirical, from fits shown in Figs. 3 and 4 and Eqs. (21) and (22).

sition data could be effectively linearized by the same value of C. Therefore the fits, subject to constraints $S_0 = 2700$ and C(Res) = C(Int), yielded C = 45.73, B(Res) = 50709, and B(Int) = 46274. Summarizing, the predicted line strengths can be specified by

$$S(\text{Res}) = \left(2700 + \frac{50\,709}{Z - 45.73}\right) \left(\frac{\cos\theta}{Z}\right)^2, \qquad (20)$$

$$S(\text{Int}) = \left(2700 + \frac{46\,274}{Z - 45.73}\right) \left(\frac{\sin\theta}{Z}\right)^2,$$
 (21)

$$\cot 2\theta = 0.298 + 16.628/(Z - 46.41). \tag{22}$$

The fitting constants can subsequently be sharpened as additional lifetime and energy level measurements become available. However it is significant to note that Eqs. (20)-(22) summarize, in very economical form, all of the information that is presently known concerning the line strengths of these Cd-like transitions.

The resonance and intercombination transition probability rates predicted by this semiempirical linearization are tabulated in Tables II and III for $48 \le Z \le 67$, together with the wavelengths and the MCDHF calculations. For Z > 50, the

results of the present calculation agree with the predictions of the considerably more elaborate theoretical model of Ref. [15]. This agreement indicates that the present approach should be sufficient to characterize the isoelectronic trends predicted by the MCDHF method at intermediate values of Z; that is, away from the neutral-Z region that is complicated by extensive electron correlation effects, not yet in the high-Z region that is complicated by comparation interaction resulting from level crossings due to the comraction of the 4f shell. Although the quantitative description of the high-Z region would require a considerably more thorough theoretical effort, sharp deviations of our theoretical results from the smooth semicmpirical isoclectronic trend in the high-Z region indicate the possible breakdown of the semiempirical formatation based on the single-configuration approach.

VI. CONCLUSIONS

The approximate linearities observed in the measured data through their expositions as $\cot 2\theta$ and Z^2S_r vs 1/(Z-C)(with C optimally chosen) have been verified for the Cd sequence by MCDHF calculations in the region $48 \le Z \le 67$. This confirms the suggestion [4] that a few accurate lifetime measurements for the 5s5p ${}^{1}P_{1}$ and 5s5p ${}^{3}P_{1}$ levels can be

Contrast Cd and Mg Isoelectronic Sequences

- Cd: 48 electrons theoretically challenging midrange Z, many stable isoelectronic ions
- Hg: *80 electrons* very complex only four radioactively stable ions
- Cd: Plunging levels from unfilled 4f subshell perturb 5s5p for certain $Z \ge 60$ ions eventually replace 5s² as ground state
- Hg: $6s^2$ and 6s6p remain below levels from 5f and 5g through Z = 92

6s²-6s6p rates in radioactive elements difficult to measure, but may dominate radiative transfer in plasmas that contain these ions.

	*		7 ,000				Intercon	bination		
2	192	$\lambda_{\mathbb{R}}(\Lambda)^*$	-	7.(30)		$\overline{\lambda_I(\Lambda)^*}$		77(26)		
				<u> </u>	MCDar		Expt."	SE		and(a.2)
3 0		1019.6	1.96(3)-	1.366	1.006	2537.3	118.9(4)*	117.9	199.5	A 1001
81	тп	1391.7	0. 50(4) *	0.002	0.543	1906.7	39(3)°	98.0	100.0	0.1771
5 2	РЪ Ш	1048.9	0.300(31)4	0.300	0.334	1553.0	18 2/7/8	30.5	30.U	0.2307
83	BIT	872.6	9.243(13)*	0.243	0.228	1917 1	$10.4(7)^{-1}$	10.1	16.0	0.2725
84	Po V	746.0	• • •	0.176	0.166	1148 3	8.1(1)	8.62	8.76	0.3065
35	At VI	653.2		0.123	0 126	1190.3		5.27	5.44	0.3417
86	Ra VII	578.5		A 104	0.0070	1019.4		3.56	3.68	0.3675
87	Pr VIII	517.6		A 8890	0.00791	919.9		2.57	2.65	0.3889
88	Ra IX	456.9		0.0671	0.0781	839.2		1.94	2.00	0.4070
89	Ac X	424 0		0.00/1	0.0633	772.0		1.52	1.56	0 4223
an	Th YT	407 1		0.0000	0.0520	715.7		1.23	1.95	0.40EE
01		367.1		0.0455	0.0432	667.4		1 01	1.00	0.4300
91	Pa All	355.0		0.0380	0.0362	625.5		1.VI	1.03	0.4409
92	U XIII	326.8		0.0319	0.0305	588 7		0.003	0.855	0.4569
NC	ALL VALUE	Rom Table						0.725	0.736	0.4656

Parentheses denote quoted or propagated uncertainties. TABLE IV: Lifetime proc

*Extrapolates for Z>84 using Eq. 12, 13. *Recommended values from Table IV.

"Comissiprical values from Eqs. 10, 12, 13. CDHP values from this work.

Semiempirical values from Eqs. 11, 12, 13.

 $Z^2S_r(Res) = 5670[1 + 35.55/(Z - 75)]$

 $Z^2S_r(Int) = 5670[1 + 31.57/(Z - 75)]$

 $\cot 2\theta = 0.3096 + 5.437/(Z - 78)$

$$R_{11}/R_{11} = 0.9931 - 0.0334/(Z - 79)^{1.6}$$

Dirac Formulation

For ns^2 -nsnp there are two radial wavefunctions $R_{2j,2j'}$

$$S(Res) \propto [R_{11}\cos(\theta_{jj} - \theta) - R_{31}\sin(\theta_{jj} - \theta)]^2$$
$$S(Int) \propto [R_{11}\sin(\theta_{jj} - \theta) + R_{31}\cos(\theta_{jj} - \theta)]^2$$

and the *jj* coupling limit

$$an heta_{jj} = \sqrt{rac{1}{2}}$$

reduces by trigonometric identities to

$$S_r(Res) \equiv \frac{S(Res)}{\cos^2(\theta - \xi)}$$

 $S_r(Int) \equiv \frac{S(Int)}{\sin^2(\theta - \xi)}$

where

$$\tan \xi \equiv \sqrt{2} \frac{R_{31} - R_{11}}{2R_{31} + R_{11}}.$$

$$\begin{array}{cccc} \text{IC} & 252.\wp & \vartheta \\ \text{CI.} & 25^2, 2.\wp^2 & \varphi \end{array}$$

 $S'_{H} = \frac{2}{3} (\sqrt{3} \cos \phi - 4 \sin \phi)^{2} S_{H} - \frac{38.5}{S_{H} = 54}$ $\phi \leq 13^{\circ}$

- Fleming et al, Phys. Scr 53 446 (1996)
 - -- Vunerman & Fracse Fischer, PRA 51, 120 (1995)

CLOSED SHELL CORES WITH HYDROGENIC ORDERING

$$N_{e} = 2 \sum_{n=1}^{n_{mex}} n^{2} = \frac{2}{3} n_{n} (n_{m} + \frac{1}{2}) (n_{m} + 1)$$

$$= 2 (1 + 4 + 9 + 16 + \cdots)$$

$$\sum_{\substack{l = 2 \\ l = like}}^{l} \frac{10 (Ne - like)}{28 (Ni - like)}$$

$$= \frac{10 (Ne - like)}{60 (Nd - like)}$$

Promethium Isoelectronie Seguence Ne = 61 hyper-alkalilike for large Z Samarium Isoelectronie Seguence Ne = 62 hyper-alkalinerearthlike Seguence Ne Ne

Fig. 1. Upper promethium sequence. The average energies of the indicated configurations (4f¹⁴5p, 4f¹³5s², 4f¹²5s²5p), relative to that of 4f¹⁴5s, are plotted against nuclear charge. Included are both the Hartree-Fock energy (HF) and its lowest-order relativistic correction (Pauli). Also plotted for W^{+13} are the relativistic Hartee-Fock (HFR) results of Cowan [5] indicated by triangles. Other symbols indicate results of the present work. Energies are given in units of 10^3 cm⁻¹ (kK).

g09290 (10

	:				SA	MAR	IUM SEC	UENCE					
		1	1					1	3	6			
Z Ion	: (S	-	P)		:		(\$ -	-	P)			
	:	0		1		:		0		1			
		_	:			:	\ (`n `	:				
	. λ(/	5)	:	~~((ps)	:	Λ(, A)	:		て	(þs)	
	NCI)F	:	NCDF	Nix	:	NCDF	Obs	:	NCDF	Nix	HF/C	IC
 74	: 24	•=== 9.3	:	20.7		:	423.3		:	752			
75 Re	: 23'	7.5	:	17.4	11.9	:	398.4		:	608	393		
76 Os	: 221	1.3	:	12.8	10.3	:	376.2	[366.3]	:	502	333	281	
77 Ir	: 20'	7.0	:	11.1	9.0	:	356.3	[347.0]	:	421	285	240	[2
78 Pt	: 193	3.9	:	9.7	8.1	:	338.3	[330.0]	:	357	248	207	[20
79 Au	: 18	2.0	:	8.6	7.3	:	321.8	[313.6]	:	307	219	180	[1
80 Hg	: 17	1.0	:	7.5	6.5	:	306.8		:	266	194		
81 TI	: 16	9.0	:	6.7	5.8	:	293.1		:	232	172		
82 Pb	: 15	1.5	:	5.9	5.1	:	280.4		:	205	153		
83 Bi	: 14	2.8	:	5.2	4.5	:	268.7		:	182	136		
84 Po	: 134	6.7	:	4.6	4.0	:	257.8		:	162	120		
85 At	: 12	7.2	:	4.1	3.5	:	247.7		:	146	107		
86 Rn	: 12	0.2	:	3.7	3.1	;	238.2		:	132	95		
87 Fr	: 11	3.6	:	3.3	2.8	:	229.4		:	119	86		
88 Ra	: 10	7.5	:	2.9	2.5	:	221.2		:	109	79		
89 Lu	: 10	1.8	:	2.6	2.2	:	213.4		:	100	74		
90 Th	: 9	6.4	:	2.3	2.1	:	206.1		:	92	71		
91 Pa	: 9	1.3	:	2.1	2.0	:	199.3		:	84	70		
92 U	: 8	6.6	:	1.8	1.9	:	192.8		:	78	71		

. 1

Fleming & Hibbert

_	_	Intercombination tra	fisitions	Resonance trans	litions	
<u>Z</u>	Ion	Texpi	Tpred	Texpt	Torret	$\sin heta$
10	Ne	29900±1000,10 ^{6,j}		1470±100*	1547	0.2656
		31 700±1600 ,10 ^{b,j}		1870±180,10 ^{b,j}		0.2000
		29800±2000,10 ^{e,j}		1300±100,10 ^{e,j}		
11	Na	6000±1200*	5623	320 ⁺⁵⁰ *	346	0 2131
		10 600±500 ,10 ^{d,j}		580±60 ^d	••••	0.2101
12	Mg	1900±190*	1820	100±15°	131	0.99900
				110^{+15a}	101	V.8200
13	Al		637	46 ⁺¹⁰	63	0 9877
14	Si		248	28+**	38	0.20//
15	P	130±30 [*]	137	18+7*	21	0.9791
16	S	52 ± 2^{f}	52	14.5+1.08	15	0.3731
		49±13 ^{h,j}		12+3 ^h ,j	10	0.4309
17	CI	27±1 ^f	27	13+1 ^f	11	0.4070
		$34 \pm 12^{h,j}$		10上9 ^年 ,j	11	0.4872
		$30\pm 5^{i,j}$		1012 ···		
18	Ar	19±4 ^{i,j}	16	BELO OLI		
			10	0.5±2.0 *		
34	Se		0.28		0.00	
35	Br		0.24		0.60	0.7847
36	Kr		0.21		0.53	0.7878
37	Rb		0.10		0.47	0.7904
38	Sr		0.18		0.42	0.7927
39	Ŷ		0.10		0.36	0.7947
			0.14		0.34	0.7966

TABLE III. Ne sequence $2p^5 3s^{1,3}P$ levels (lifetimes in ps).

^aThis work.

^bLawrence and Lisst, Ref. [56]. ^cKernahan et al., Ref. [57]. ^dSchlagheck, Refs. [56,59]. ^eBuchet et al., Ref. [60].

^fWesterlind et al., Ref. [61]. ⁸Kirm et al., Ref. [65]. ^hGardner et al., Ref. [62].

Berry et al., Ref. [63].

Excluded from plot and fit.

Ξ

BRANCHING FRACTIONS FROM DIFFERENTIAL LIFETIME MEASUREMENTS

2s3p ¹ P ₁ →	2 s^{2 1}S₀	2p ^{2 1} D ₂	2p ^{2 1} S ₀	2 s3s ¹ S ₁
Be I	55.6	26.5	0.1	17.9
BII	68.6	14.4	13.9	3.0
C 111	87.3	11.6	0.8	0.2
N IV	89.9	9.5	0.4	0.1
ον	91.4	8.2	0.3	0.05
Ne VII	93.5	6.3	0.2	0.02
Fe XXIII	95.9	3.1	0.1	0.01

.

Bhatia & Mason, A&A 103, 324 (1981) [Fe] Laughlin *et al*, J.Phys.B 11, 2243 (1978) [Others]

•

			Intercombinat	ion transitions			Resonance	ransitions		
<u></u>	Ion	73,0	$ au_1$	Asspt	Apred	Ŧ	BF	A	Annal	ain A
5	B				0.0001	1.96(9)*	0.686*	0.346(16)	0.35	0.0100
6	C				0.0004	0.28(4)*	0.873	3.12(45)	2 95	0.0100
						0.266(20)4		3 26/24)		V.VII3
7	N	8.96(10)	8.72(12)	0.0033(20)*	0.0028	0.067(5)*	0.800	10 3(6)	10.4	
				、		0.10(2) ^f	0.000	() ()	10.4	0.0104
8	0	5.31(5)	4.74(7)	0.0226(4)*	0.019	0.041(4)*	6 614 ^b	·(*)		
				- (-)			0.044	44(<i>4)</i> 96/9)		0.0206
9	F	2.94(3)	2.24(4)	0.102(9)*	0.100	0 024(A)*		20(2) 20(2)		
10	Ne	1.75(7)	1.00(6)	0.43(6) ^b	0.418		0.001	 (•)		0.0410
11	Na	1.10(16)	0.29(6)	2.54(73) ⁱ	1		0.004			0.0627
12	Mg	0.745(60)	0.145(20)	5.55(96) ⁱ	5.78				100	0.0000
13	AŬ	0.515(50)	0.071(12)	$12 1(24)^{i}$	17 4		0.943			0.1400
14	Si	0.365(25)	0.036(7)	25 0(54) ⁱ	47 7		0.766		430	0.1990
15	P	()	••••••(•)				U.969			0.3000
16	S						0.961		822	0.3441
17	CI				410		0.962		1005	0.4155
18	Ar				410		0.963		1327	0.4851
19	ĸ				11		0.965		1584	0.5558
<u>`0</u>	Ca				1133		0.965		1836	0.6200
1	Se l				1732		0.966		2079	0.6732
22	Ti				7476		0.967		2375	0.7006
23	v				3226		0.967		2740	0.7300
34	c-l				4307		0.968		3151	0.7574
94 75	M-		•		5130		0.968		3635	0.7000
nj Ma	F				6383		0.960		4636	0.7792
	re				7850		0.960 ¹		5130	0.7860

TABLE II. Be sequence 2s3p^{1,3}P levels (lifetimes in ns). The experimental uncertainty in the last figure is given in perentheses. Branching fractions without labels are interpolated.

*Kernahan et al., Ref. [57].

^bLaughlin et al., Raf. [40].

"This work.

^dBuchet-Poulisac and Buchet, Ref. [37].

*Engström et al., Raf. [27].

^fDumont et el., Ref. [36].

"Knystautes and Drouin, Rof. [30].

Hardis et al., Ref. [36].

Gransow et el., Ref. [20].

Bhatin and Mason, Ref. [41].

For the s²-sp transitions these are

$$<^{1} S_{0}|r|^{3} P_{1} >= [\sin \theta_{1}]\mathcal{M}_{sp}$$
$$<^{1} S_{0}|r|^{1} P_{1} >= [\cos \theta_{1}]\mathcal{M}_{sp}$$

and for sp-sd

.

$$<^{3} P_{0}|r|^{3}D_{1} >= \left[\frac{1}{\sqrt{3}}\right]\mathcal{M}_{pd},$$

$$<^{3} P_{1}|r|^{3}D_{1} >= \left[\frac{1}{2}\cos\theta_{1}\right]\mathcal{M}_{pd},$$

$$<^{3} P_{2}|r|^{3}D_{1} >= \left[\frac{1}{\sqrt{60}}\right]\mathcal{M}_{pd},$$

$$<^{1} P_{1}'|r|^{3}D_{1} >= \left[\frac{1}{2}\sin\theta_{1}\right]\mathcal{M}_{pd},$$

$$<^{3} P_{1}'|r|^{3}D_{2}' >= \left[\frac{\sqrt{3}}{2}\cos\theta_{1}\cos\theta_{2} + \sin\theta_{1}\sin\theta_{2}\right]\mathcal{M}_{pd},$$

$$<^{3} P_{2}|r|^{3}D_{2}' >= \left[\frac{1}{2}\cos\theta_{2}\right]\mathcal{M}_{pd},$$

$$<^{1} P_{1}'|r|^{3}D_{2}' >= \left[\frac{\sqrt{3}}{2}\sin\theta_{1}\cos\theta_{2} - \cos\theta_{1}\sin\theta_{2}\right]\mathcal{M}_{pd},$$

$$<^{3} P_{2}|r|^{3}D_{3} >= \left[\sqrt{\frac{7}{5}}\right]\mathcal{M}_{pd},$$

$$<^{3} P_{2}|r|^{3}D_{3} >= \left[\frac{\sqrt{3}}{2}\cos\theta_{1}\sin\theta_{2} - \sin\theta_{1}\cos\theta_{2}\right]\mathcal{M}_{pd},$$

$$<^{3} P_{2}|r|^{3}D_{2} >= \left[\frac{\sqrt{3}}{2}\cos\theta_{1}\sin\theta_{2} - \sin\theta_{1}\cos\theta_{2}\right]\mathcal{M}_{pd},$$

$$<^{3} P_{2}|r|^{1}D_{2}' >= \left[\frac{\sqrt{3}}{2}\sin\theta_{1}\sin\theta_{2} + \cos\theta_{1}\cos\theta_{2}\right]\mathcal{M}_{pd},$$

$$<^{3} P_{2}|r|^{1}D_{2}' >= \left[\frac{\sqrt{3}}{2}\sin\theta_{1}\sin\theta_{2} + \cos\theta_{1}\cos\theta_{2}\right]\mathcal{M}_{pd}.$$

ļ

Table 4: Data base of experimental lifetime measurements (Exp) and semiempirical predictions (SE) based on this parametrization. Quoted measurement uncertainties are given in parentheses. The ${}^{3}P_{1}$ predictions are based on the ${}^{1}P_{1}$ measurements, and the ${}^{3}D_{1}$ and ${}^{3}D_{3}$ predictions are based on the ${}^{3}D_{2}$ measurements. A few recent calculations for the lifetimes of the *nsnp* levels (Theo) are included for comparison.

	Ga II			In II			<u></u> Т	111	
Level	Exp	Theo	SEa	Exp	Theo	SE ^a	Exp	Theo	SEa
$^{3}P_{1}$	-	2445 ^b	2380	440(40) ^c	598 ^d	449	$\frac{1}{39(3)^{e}}$	$\frac{-1}{36.3^{f}}$	34.2
${}^{1}P_{1}$	$0.41(3)^{g}, 0.49(4)^{h},$		-	$0.79(5)^k, 0.90(8)^l$		-	$0.59(4)^{e}$	0.574^{f}	-
	$0.65(8)^i, 0.48(12)^j$						()		
310									
$^{\circ}D_{1}$	-		0.66	$0.86(3)^{k}$		0.86	-		-
$^{3}D_{2}$	$0.67(6)^{j}$		-	$0.91(3)^{k}$		-	-		-
$^{3}D_{3}$	-		0.69	$0.94(3)^{k}$		1.00	-		_
$\frac{^{1}\text{D}_{2}}{\frac{^{2}}{2}}$	$0.67(4)^{j}, 0.73(7)^{m}$			$0.77(3)^{k}$		-	$5(1)^n, 7(1)^o$		-
" This w	vork.								
^o Flemir	ng and Hibbert [19].								
^c Peik e	t al. [22].								
^d Chou	et al [20].								
^e Hende	rson and Curtis [23].								
^f Brage	et al [21].								
^g Engstr	öm [24]								
h Ander	sen <i>et al.</i> [25].								
ⁱ Sørense	en [26].								
^j Ansba	cher <i>et al.</i> [27]								
^k Ansba	cher <i>et al</i> [28]								
¹ Anders	en et al [20].								
^m Denne	et al [30]								
n Andor	, ci ui. [JU]. Son and Egnesses [91]								
0 Chim	sen and Sørensen [31]	•							
Sumor	n and Erdevdi $[32]$.								

٠

Table 2: Wavelengths (in air for $\lambda \ge 2000$ Å), multiplet fractions (in %), branching fractions (in %) and transition probability rates (in ns⁻¹) for the two supermultiplets. The transition probability rate predictions are based on the branching fractions obtained by this formalism and the measured and predicted lifetimes given in Table 3.

.

		Ga	ı II			In	II				11	
Transition	$\lambda(\text{\AA})$	Rik	BF	Aik	$\lambda(A)$	Rik	BF	Air	$\lambda(\dot{A})$	Ren	BF	A .,
$^{-1}S_{0}-^{3}P_{1}$	2090.77	0.019	100	0.00042	2306.15	0.18	100	0.0023	1908.65	1.70	100	$\frac{11ik}{0.026}$
										2.10	100	0.020
${}^{1}S_{0}-{}^{1}P_{1}$	1414.40	99.98	100	2.19	1586.45	99.82	100	1.22	1321.70	98.30	100	1.69
											100	1.00
${}^{3}P_{0}-{}^{3}D_{1}$	1504.93	15.94	56.13	0.854	1672.00	16.57	57.17	0.665	1499.34	4.14	60.31	_
³ P ₁ -	1515.11	11.71	41.23	0.627	1702.57	11.70	40.38	0.470	1568.53	8.81	37.55	-
${}^{3}P_{2}$ -	1536.90	0.75	2.63	0.040	1777.57	0.69	2.38	0.028	1837.49	0.38	1.64	-
$^{1}P_{1}$ -	2318.68	0.002	0.01	0.0001	2560.06	0.02	0.07	0.001	2469.18	0.12	0.50	-
SUM		28.40	100	1.522		28.98	100	1.163		23.45	100	-
${}^{3}P_{1}-{}^{3}D_{2}$	1514.51	21.11	75.79	1.131	1700.08	21.20	77.22	0.849	1561.60	25.22	79.30	-
³ P ₂ -	1536.28	6.74	24.21	0.361	1774.86	6.23	22.70	0.249	1827.99	5.80	18.24	-
¹ P ₁ -	2317.27	0.002	0.01	<10-4	2554.44	0.023	0.08	0.001	2452.04	0.78	2.46	-
SUM		27.85	100	1.493		27.46	100	1.099		31.80	100	-
9- 9-												
³ P ₂ - ³ D ₃	1535.31	27.03	100	1.448	1770.66	25.11	100	1.063	1814.85	33.49	100	-
2- 1-												
${}^{3}P_{1}-{}^{1}D_{2}$	1275.94	0.16	0.02	0.0003	1417.81	0.20	1.08	0.014	1593.19	3.21	28.52	0.048
³ P ₂ -	1291.36	$< 10^{-3}$	$< 10^{-3}$	10^{-5}	1469.44	0.002	0.01	0.0001	1871.43	0.05	0.44	0.001
¹ P ₁ -	1802.25	16.70	99.98	1.460	1966.71	18.25	98.91	1.285	2530.88	7.99	71.04	0.118
SUM		16.72	100	1.460		18.45	100	1.299		11.25	100	0.167

		$A_{ik}(ns^{-1})$		BF (%)					
Transition	RQDO ^a	RQDO ⁶	SE ^c	RQDO ⁴	RQDO ⁴	SEc			
5s5p ³ P ₀ - 5s5d ³ D ₁	0.696	0.593	0.665	57.9	57.9	57.17			
5s5p ³ P ₁ -	0.483	0.412	0.470	40.2	40.2	40.38			
5s5p ³ P ₂ -	0.023	0.020	0.028	1.9	1.9	2.38			
5s5p ¹ P ₁ -	-	•	0.001	•	-	0.07			
5s5p ³ P ₁ - 5s5d ³ D ₂	0.873	0.747	0.849	80.1	80.1	77.22			
5s5p ³ P ₂ -	0.218	0.186	0.249	19.9	19.9	22.70			
5s5p ¹ P ₁ -	-	•	0.001	-	-	0.08			
5s5p ³ P ₂ - 5s5d ³ D ₃	0.878	0.754	1.063	100.	100.	100.			

TABLE III. Comparison of predicted transition probabilities and branching fractions for the 5s5p ³P - 5s5d ³D manifold in In II.

^a Lavin and Martin, rel. quantum defect orbital [15].

^b Lavin and Martin, rel. quantum defect orbital with polarization [15].

^c This work.

np²

30	3 P.	³ P ₂	¹ D ₂	15.
E-SE-8	0	0	0	-1250
0	E-SF-5,12	. 0	0	0
o	0	E5F2+54/2	52/52	0
0	0	ζ₂/√Σ	F0+ F2	0
-1250	0	0	0	F_+ 10F2
	3P0 E0-SF2-54 0 0 0 -12 50	$ \frac{{}^{3}P_{0}}{E_{0}-SF_{2}-S_{4}} = 0 $ $ 0 \qquad E_{0}-SF_{2}-S_{4}/2 $ $ 0 \qquad 0 $ $ 0 \qquad 0 $ $ -\sqrt{2}S_{0} \qquad 0 $	$ \frac{{}^{3}P_{0}}{E_{0}-SF_{2}-S_{4}} = 0 \qquad 0 \\ 0 \qquad E_{0}-SF_{2}-S_{4}/2 \qquad 0 \\ 0 \qquad 0 \qquad E_{0}-SF_{2}-S_{4}/2 \qquad 0 \\ 0 \qquad 0 \qquad E_{0}-SF_{2}+S_{4}/2 \\ 0 \qquad 0 \qquad S_{1}/\sqrt{2} \\ -\sqrt{2}S_{0} \qquad 0 \qquad 0 $	$ \frac{{}^{3}P_{0}}{}^{3}P_{4} \frac{{}^{3}P_{2}}{}^{4}D_{2} $ $ \frac{{}^{6}}{}^{5}SF_{2}-S_{4}} 0 0 0 $ $ 0 E_{0}-SF_{2}-S_{4}/2 0 0 $ $ 0 0 E_{0}-SF_{2}+S_{4}/2 S_{2}/\sqrt{2} $ $ 0 0 S_{1}/\sqrt{2} F_{0}+F_{2} $ $ -\sqrt{2}S_{0} 0 0 0 $

This is dragonalized by the transformation J' the I, where

J =		0 0 1 cos 8,		0 , & riz	sin vo	
	0	0	-sin Or	cos da	٥	
	L-sinto	0	0	0	cos 8 ₀ J	

with the energy levels

$${}^{3}P_{0}' = E_{0} + 5F_{2}/2 - 5_{4}/2 - \Delta_{0}$$

$${}^{3}P_{1} = E_{0} - 5F_{2} - 5F_{4}/2$$

$${}^{3}P_{2}' = E_{0} - 2F_{2} + 5_{4}/4 - \Delta_{2}$$

$${}^{4}D_{2}' = E_{0} - 2F_{2} + 5_{4}/4 + \Delta_{2}$$

$${}^{4}S_{0}' = E_{0} + 5F_{2}/2 - 5_{4}/4 + \Delta_{2}$$

$${}^{4}S_{0} = \int (45F_{2}/2 + 5_{4}/2)^{2} + 25_{0}^{2}$$

$${}^{2}\Delta_{2} = \overline{(3F_{2} - 5_{4}/4)^{2}} + 5_{2}^{2}/2$$

where the engles are $\cot 2\theta_0 = \frac{15F_2 + 54}{1850}$ $\cot 2\theta_2 = \frac{12F_2 - 54}{\sqrt{85}}$ levels of the ground configuration p^2 can be deduced from this formalism using the LS coupling angular transition matrices [12, 13]. The nonvanishing values are

$$\langle {}^{3}\mathrm{P}_{0}^{o}|r|{}^{3}\mathrm{P}_{1}\rangle = \langle {}^{1}\mathrm{P}_{1}^{o}|r|{}^{1}\mathrm{S}_{0}\rangle = -\langle {}^{3}\mathrm{P}_{1}^{o}|r|{}^{3}\mathrm{P}_{0}\rangle = -\sqrt{20}$$
(10)

$$2\langle {}^{3}\mathrm{P}_{2}^{o}|r|{}^{3}\mathrm{P}_{1}\rangle = -2\langle {}^{3}\mathrm{P}_{1}^{o}|r|{}^{3}\mathrm{P}_{2}\rangle = \langle {}^{1}\mathrm{P}_{1}^{o}|r|{}^{1}\mathrm{D}_{2}\rangle = 10$$
(11)

$$\sqrt{5}\langle {}^{3}\mathrm{P}_{1}^{o}|r|{}^{3}\mathrm{P}_{1}\rangle = \langle {}^{3}\mathrm{P}_{2}^{o}|r|{}^{3}\mathrm{P}_{2}\rangle = \sqrt{75}.$$
(12)

These equations yield, for the upper level ${}^{3}P_{1}^{o}$

$$\langle {}^{3}\mathbf{P}_{0}{}^{\prime}|\mathbf{r}|{}^{3}\mathbf{P}_{1}{}^{\prime\prime}\rangle = -\sqrt{20}\cos(\theta_{1}+\theta_{0}) \langle p^{2}|r|sp\rangle$$
⁽¹³⁾

$$\langle {}^{3}\mathrm{P}_{1}'|\mathbf{r}|{}^{3}\mathrm{P}_{1}^{o\prime}\rangle = \sqrt{15}\cos\theta_{1} \langle \mathrm{p}^{2}|r|\mathrm{sp}\rangle \tag{14}$$

$$\langle {}^{3}\mathbf{P}_{2}'|\mathbf{r}|{}^{3}\mathbf{P}_{1}^{o\prime}\rangle = 5(2\sin\theta_{1}\sin\theta_{2} + \cos\theta_{1}\cos\theta_{2}) \langle \mathbf{p}^{2}|\mathbf{r}|\mathbf{sp}\rangle$$
(15)

$$\langle {}^{1}\mathrm{D}_{2}'|\mathbf{r}|{}^{3}\mathrm{P}_{1}^{o\prime}\rangle = -5(2\sin\theta_{1}\cos\theta_{2} - \cos\theta_{1}\sin\theta_{2})\,\langle\mathrm{p}^{2}|r|\mathrm{sp}\rangle \tag{16}$$

$$\langle {}^{1}S_{0}'|\mathbf{r}|^{3}P_{1}^{o\prime}\rangle = -\sqrt{20}\sin(\theta_{1}+\theta_{0}) \langle \mathbf{p}^{2}|r|\mathbf{sp}\rangle, \tag{17}$$

for the upper level ${}^{3}P_{2}^{o'}$

$$\langle {}^{3}\mathbf{P}_{1}'|\mathbf{r}|{}^{3}\mathbf{P}_{2}''\rangle = 5 \langle \mathbf{p}^{2}|r|\mathbf{s}\mathbf{p}\rangle \tag{18}$$

$$\langle {}^{3}\mathbf{P}_{2}'|\mathbf{r}|{}^{3}\mathbf{P}_{2}^{o\prime}\rangle = \sqrt{15}\cos\theta_{2} \langle \mathbf{p}^{2}|\mathbf{r}|\mathbf{s}\mathbf{p}\rangle \tag{19}$$

$$\langle {}^{1}\mathbf{D}_{2}'|\mathbf{r}|{}^{3}\mathbf{P}_{2}^{o\prime}\rangle = \sqrt{15}\sin\theta_{2} \langle \mathbf{p}^{2}|\mathbf{r}|\mathbf{s}\mathbf{p}\rangle, \tag{20}$$

and for the upper level ${}^{1}P_{1}^{o\prime}$

$$\langle {}^{3}\mathbf{P}_{0}'|\mathbf{r}|{}^{1}\mathbf{P}_{1}^{o}\rangle = -\sqrt{20}\sin(\theta_{1}+\theta_{0}) \langle \mathbf{p}^{2}|\mathbf{r}|\mathbf{s}\mathbf{p}\rangle$$
(21)

$$\langle {}^{3}\mathbf{P}_{1}'|\mathbf{r}|{}^{1}\mathbf{P}_{1}^{o\prime}\rangle = \sqrt{15}\sin\theta_{1} \langle \mathbf{p}^{2}|\mathbf{r}|\mathbf{sp}\rangle$$
⁽²²⁾

$$\langle {}^{3}\mathbf{P}_{2}'|\mathbf{r}|{}^{1}\mathbf{P}_{1}^{o}'\rangle = 5(2\cos\theta_{1}\sin\theta_{2} - \sin\theta_{1}\cos\theta_{2}) \langle \mathbf{p}^{2}|r|\mathbf{sp}\rangle$$
(23)

$$\langle {}^{1}\mathbf{D}_{2}'|\mathbf{r}|{}^{1}\mathbf{P}_{1}^{o}'\rangle = -5(2\cos\theta_{1}\cos\theta_{2} + \sin\theta_{1}\sin\theta_{2}) \langle \mathbf{p}^{2}|\mathbf{r}|\mathbf{s}\mathbf{p}\rangle$$
(24)

$$\langle {}^{1}\mathrm{S}_{0}{}^{\prime}|\mathbf{r}|{}^{1}\mathrm{P}_{1}^{o\prime}\rangle = -\sqrt{20}\cos(\theta_{1}+\theta_{0})\,\langle \mathrm{p}^{2}|r|\mathrm{sp}\rangle.$$
⁽²⁵⁾

It should be noted that in a fully relativistic Dirac treatment the corresponding expressions will involve two separate jj coupled radial transition matrices, and reduce to equations (13-25) only if these two radial matrices are equal. Theoretical studies of these relativistic corrections have been presented elsewhere [14].

For pure sp and p^2 configurations the energy levels (and thereby the mixing angles) are specified [10] by three parameters (F_0 , G_1 , ζ_p for sp and F_0 , F_2 , ζ_{pp} for p^2 , in the notation of Ref.[13]). Since the sp and p^2 configurations contain four and five levels respectively, the specification of these three parameters is overdetermined. Here this was treated by using the average energies ε_J of the J=0,1,2 levels to make an exactly determined parametrization, computing the singlet-triplet splittings from this parametrization, and then using the deviations as a measure of the validity of the

Letter to the Editor

		Siı		Gei				
Transition	SE	Expt [6]	Expt [7]	SE	Expt [8]	Expt [9]		
${}^{3}P_{0}^{\prime} \leftarrow {}^{3}P_{1}^{0^{\prime}}$	33.3	33.3(17)	33.3(3)	31.2	32.5(16)	32.9		
$^{3}P_{1} \leftarrow$	24.7	24.7(13)	24.7(4)	21.2	22.1(11)	20.3		
${}^{3}P'_{2} \leftarrow$	41.1	40.6(21)	40.7(4)	38.3	37.1(19)	36.1		
${}^{1}D'_{2} \leftarrow$	0.88	1.20(11)	1.2(1)	8.8	8.1(8)	10.3		
${}^{1}S'_{0} \leftarrow$	0.06	<0.20(6)	<0.20(6)	0.52	0.23(2)	0.38		
${}^{3}P_{1} \leftarrow {}^{3}P_{2}^{o}$	25.2	24.6(13)	24.6(3)	26.4	27.2(14)	31.0		
${}^{3}P_{2}' \leftarrow$	74.8	75.4(36)	75.4(3)	73.1	72.1(14)	67.8		
$^{1}D_{2}^{\prime} \leftarrow$	0.020	0.027(4)	0.027(4)	0.53	0.72(7)	1.3		
${}^{3}\mathbf{P}_{0}^{\prime} \leftarrow {}^{1}\mathbf{P}_{1}^{0\prime}$	0.24	0.34(3)	0.30(2)	2.9	4.6(5)	4.5		
${}^{3}P_{1} \leftarrow$	0.25	0.27(3)	0.20(2)	3.3	3.6(4)	36		
${}^{3}P_{2}' \leftarrow$	0.15	0.25(3)	0.20(2)	1.0	1 68(17)	17		
${}^{1}D_{2}^{\prime} \leftarrow$	92.0	93.4(47)	93.4(2)	86.2	86 1(14)	83.7		
$\stackrel{1}{\underbrace{S_{0}'}} \leftarrow$	7.4	5.7(3)	5.70(12)	6.6	4.0(4)	7.0		

Table 1. Comparison of semiempirical and measured branching fractions (in %) for SiI and GeI. SE denotes the semiempirical estimates of [3]. Expt denotes experimental measurements as cited, with parentheses indicating quoted uncertainties in the last figure.

	P 11		S III		Cliv		Arv	
Transition	λ(Å)	BF	λ (Å)	BF	λ (Å)	BF	$\frac{1}{\lambda(\dot{A})}$	BF
${}^{3}P_{0}' \leftarrow {}^{3}P_{1}^{o'}$	1115.82	33.1	681.49	32.8	A6A 20	20.4		
$^{3}P_{1} \leftarrow$	1155.01	24.5	687.88	24.0		32.4	337.58	31.9
$^{3}P_{2}^{\prime} \leftarrow$	1158 82	41.0	(95.20	24.2	465.34	23.8	338.45	23.2
$1D'_{4} \leftarrow$	1284.22	41.0	85.58	40.8	467.19	40.7	339.91	40.5
\mathbf{z}_2	1204.33	1.3	784.47	1.9	495.98	2.7	357 24	2.9
S ₀ ←	1534.49	0.12	836.28	0.22	546.92	0.32	387.12	3.8 0 49
$P_1 \leftarrow {}^3P_2^o$	1149.96	25.2	680.97	25.2	463.01	26.0		0.49
$P'_2 \leftarrow$	1153.73	74.8	683.46	747	405.01	25.2	336.57	25.3
D′ ₂ ←	1278.08	< 10-3	726.26	/4./	404.84	74.6	338.01	74.4
-			130.25	0.11	493.34	0.21	355.14	0.37
$P'_0 \leftarrow P'_1$	1124.95	0.22	673.86	0.27	455 68	0 24	221.01	
P1 -	1127.04	0.25	675.22	0 34	156 70	0.54	331.91	0.47
$P'_2 \leftarrow$	1130.66	0.11	677 66	-10-3	430.70	0.46	332.75	0.65
D′₂ ←	1249 83	88.9	720.62	< 10 *	438.48	<10-3	334.16	<10 ⁻³
S′₂ ←	1485 50	10.0	129.52	87.2	486.18	86.1	350.89	85.2
		10.0	824.82	12.1	535.03	13.0	379.68	13.6

.

1

I

ł

.

Table 4. Transition wavelengths and semiempirical branching fractions (BF, in %) for ions in the Si sequence.

Letter to the Editor

	<u>As II</u>		Se		Briv	
Transition	λ (Å)	BF	λ (Å)	BF	λ(Å)	BF
${}^{3}P_{0}' \leftarrow {}^{3}P_{1}^{0'}$	1263.77	29.8	788.76	28.1	549.93	28.8
$^{3}P_{1} \leftarrow$	1280.99	20.0	799.74	18.4	557.98	18.6
${}^{3}P'_{2} \leftarrow$	1305.70	38.7	814.04	38.6	567.45	40.8
$D'_2 \leftarrow$	1448.59	10.5	879.13	13.4	603.68	10.5
${}^{1}S'_{0} \leftarrow$	1768.98	0.99	1017.30	1.5	676.48	1.3
${}^{3}\mathbf{P}_{1} \leftarrow {}^{3}\mathbf{P}_{2}^{0}$	1243.08	26.2	777.30	26.1	545.44	26.1
${}^{3}P'_{2} \leftarrow$	1266.34	72.7	790.80	72.0	554.48	70.8
$^{1}D_{2}^{\prime} \leftarrow$	1400.30	1.1	852.09	1.87	589.03	3.1
${}^{3}\mathbf{P}_{0}' \leftarrow {}^{1}\mathbf{P}_{1}''$	1207.45	2.34	759.56	2.70	534.47	1.9
${}^{3}P_{1} \leftarrow$	1223.16	2.95	769.74	3.50	542.07	3.0
$^{3}P_{2}^{\prime} \leftarrow$	1245.67	0.41	782.97	0.32	551.00	< 10 ⁻⁵
$D'_2 \leftarrow$	1375.07	84.4	843.00	82.2	585 08	87.6
¹ S ₀ ′ ←	1660.56	9.90	968.24	11.3	663.23	12.6

Table 5. Transition wavelengths and semiempirical branching fractions (in %) for ions in the Ge sequence.

			Sn I					SP II	
			BF(%)				<u></u>	BF(%)	
Transition	$\lambda(\mathbf{\dot{A}})^{a}$	SE*	B	Lª	CB ^e	M ^r	۸ (Å)*	SE*	r
${}^{3}\mathbf{P}_{0}' \leftarrow {}^{3}\mathbf{P}_{1}^{0'}$	2863.32	32.3	28.9	27	37	40	1438.11	30.2	38.4
${}^{3}P_{1} \leftarrow$	3009.13	17.5	20.9	17	27	28	1504.19	16.1	23.8
${}^{3}\mathbf{P}_{2} \leftarrow$	3175.03	39.7	41.8	39	22	22	1565.50	43.4	31.9
$D_{2} \leftarrow$	3801.01	10.0	8.2	17	14	11	1762.24	9.5	5.7
¹ S ₀ [−] ←	5631 .71	0.5	0.2	-	0.3	0.2	2190.85	0.8	0 2
${}^{3}P_{1} \leftarrow {}^{3}P_{2}^{\circ}$	2706.50	28.3	25.3	22	30	32	1384.66	27.8	14.8
³ P', ←	2839.98	68.5	72.1	71	64	63	1436.45	65.5	48.4
¹ D ₂ ←	3330.61	3.2	2.6	7	6	5	1600.39	6.6	36.1
${}^{3}\mathbf{P}_{0}^{\prime} \leftarrow {}^{1}\mathbf{P}_{1}^{\prime\prime}$	2546 .55	4.2	3.6	8	21	25	1317.54	3.0	16
${}^{3}P_{1} \leftarrow$	2661.24	6.8	3.6	4	13	14	1372.79	6.0	1 1
³ P', ←	2790.18	0.01	0.8	-	-	-	1423.68	0.6	0.5
¹ D, ←	3262.33	82.2	84.3	88	60	* 57	1584.56	80.2	M 7
¹ S ₀ ⁻	4624.75	6.8	7.7	-	6	4	1923.32	10.2	11.5

Table III. Wavelengths and semiempirical, theoretical and experimental branching fractions for $5s^25p^2-5s^25p6s$ transitions in Sn I and Sb II.

^a Air wavelengths for $\lambda > 2000$ Å.

^bSemiempirical, this work.

^c Bieron et al. [18], theoretical (MCDM-EAL with Babushkin gauge).

^d Lotrian et al. [19], arc emission.

^eCorliss and Bozman [20], arc emission.

^fMeggers et al. [21], arc emission.

Table IV. Wavelengths and semiempirical branching fractions for $5s^25p^2-5s^25p6s$ transitions in multiply charged ions of the Sn sequence.

	Te III	Te III		I IV		Xe V		Ca VI	
Transition	٤(Å)	BF(%)	ۂ(اُھ)	BF(%)	ـــــــــــــــــــــــــــــــــــــ	BF(%)	ـــــــــــــــــــــــــــــــــــــ	DF(%)	
${}^{3}\mathbf{P}_{0}^{\prime} \leftarrow {}^{3}\mathbf{P}_{1}^{\prime\prime}$	928.30	30.1	666.29	3 0.0	512.82	31.1	410.31	31.0	
³ ₽₁ ←	971.19	15.6	698.04	15.3	538.56	16.1	431.89	15.6	
³ ₽′ ₂ ←	1004.45	45.1	718.89	49.0	552.94	50.0	442.30	\$1.2	
$D_2 \leftarrow$	1106.63	8.5	783.98	5.0	600.38	2.4	479.25	1.8	
So ←	1310.56	0.7	885.67	0.7	664.81	0.4	522.72	0.3	
$\mathbf{P}_1 \leftarrow \mathbf{P}_2^o$	913.59	27.6	649.31	27.6	500.55	27.6	491.97	27.7	
$\mathbf{P}_2 \leftarrow \mathbf{T}_2$	942.97	63.6	667.31	57.8	512.95	54.3	419.9	51.1	
$D_2 \leftarrow$	1032.46	8.9	723.04	14.6	553.53	18.1	442.09	21.2	
'P' ← 'P'	866.40	2.1	619.65	1.5	469.19	0.7	378.46	0.6	
P1 ←	903.64	5.6	647.02	5.2	490.64	4.3	396.75	4.4	
'₽'₂ ←	932.37	1.4	664.89	5.2	59 2.55	9.4	475.52	11.9	
$D_2 \leftarrow$	1019.77	79.2	720.20	74.8	541.43	71.6	456.37	R .6	
'S₀ ←	1190.47	11.7	805.12	13.3	593.28	14.1	472.11	14.6	

C Physica Scripta 2000

Dirac Formulation

.

$$< {}^{3}P_{1} |\mathbf{r}| {}^{3}P_{0}^{o} > = \sqrt{20}R_{31}$$
 (1)

$$< {}^{3}P_{0} |\mathbf{r}| {}^{3}P_{1}^{o} >= -\frac{\sqrt{20}}{3} [(R_{31} + 2R_{11}) \cos \theta_{0} \cos \theta_{1} - (2R_{31} + R_{11}) \sin \theta_{0} \sin \theta_{1} + \sqrt{2}(R_{31} - R_{11}) \sin(\theta_{0} - \theta_{1})]$$

$$(2)$$

$$<{}^{3}P_{1} |\mathbf{r}| {}^{3}P_{1}^{o} > = \frac{\sqrt{15}}{3} \left[(2R_{31} + R_{11}) \cos \theta_{1} + \sqrt{2}(R_{31} - R_{11}) \sin \theta_{1} \right] \quad (3)$$

$$< {}^{3}P_{2} |\mathbf{r}| {}^{3}P_{1}^{o} >= \frac{5}{3} [(4R_{31} + 2R_{11}) \sin \theta_{1} \sin \theta_{2} + (4R_{31} - R_{11}) \cos \theta_{1} \cos \theta_{2} - \sqrt{2}(R_{31} - R_{11}) \sin(\theta_{1} - \theta_{2})]$$

$$(4)$$

$$< {}^{1}D_{2} |\mathbf{r}| {}^{3}P_{1}^{o} >= -\frac{5}{3} [(4R_{31} + 2R_{11}) \sin \theta_{1} \cos \theta_{2} - (4R_{31} - R_{11}) \cos \theta_{1} \sin \theta_{2} + \sqrt{2}(R_{31} - R_{11}) \cos(\theta_{1} - \theta_{2})]$$

$$(5)$$

$$< {}^{1}S_{0} |\mathbf{r}| {}^{3}P_{1}^{o} >= -\frac{\sqrt{20}}{3} [(R_{31} + 2R_{11}) \sin \theta_{0} \cos \theta_{1} + (2R_{31} + R_{11}) \cos \theta_{0} \sin \theta_{1} - \sqrt{2}(R_{31} - R_{11}) \cos(\theta_{0} - \theta_{1})]$$

$$(6)$$

Table 2: Pb I branching fractions and transition probability rates for the ${}^{3}P_{1}^{o}$ upper level in the $6s^{2}6p^{2}-6s^{2}6p7s$ multiplet.

	<u>- 1 appor</u>	level in u	1000 op = 0	o opro mu	Tupicu.
Transition	$\lambda(\text{\AA})^a$	$BF(N)^b$	$\overline{\mathrm{BF}(\mathrm{R})^c}$	$BF(M)^d$	$A(ns^{-1})^e$
${}^{3}P_{0}$ - ${}^{3}P_{1}^{o}$	2833.89	0.489	0.310	0.324	0.0529
${}^{3}P_{1}$ -	3640.61	0.128	0.166	0.188	0.0284
${}^{3}P_{2}$ -	4058.95	0.381	0.520	0.500	0.0889
${}^{1}D_{2}$ -	7230.96	0.0029	0.0040	0.0005	0.00068
$^{1}S_{0}$ -	17181	$7x10^{-5}$	$3x10^{-5}$	-	6x10 ⁻⁶

^a Vacuum wavelengths.
^b Nonrelativistic, R₁₃/R₁₁=1.
^c Relativistic, R₁₃/R₁₁=1.4590.
^d Measured, Ref.[22].

^e Relativistic, using BF(R) and τ =5.84 ns.

Table 3: Bi II branching fractions and transition probability rates for the ${}^{3}P_{1}^{o}$ upper level in the $6s^{2}6p^{2}-6s^{2}6p7s$ multiplet.

	I apper		c us up - us	oprs multip			
Transition	$\lambda(\dot{A})^a$	$BF(N)^{\overline{b}}$	$BF(R)^c$	$\overline{A(ns^{-1})^d}$			
${}^{3}P_{0} - {}^{3}P_{1}^{o}$	1436.83^{e}	0.43	0.25	0.20			
${}^{3}P_{1}$ -	1777.11 ^e	0.12	0.16	0.13			
${}^{3}P_{2}$ -	1902.31^{f}	0.44	0.59	0.47			
1D_2 -	2804.2^{e}	0.004	0.005	0.004			
${}^{1}S_{0}$ -	3933.3°	0.0002	0.0009	0.0002			
^a Vacuum wa	avelengths.						
^b Nonrelativi	stic, $\tilde{R_{13}}/R$	11=1.					
^c Relativistic	$, R_{13}/R_{11} =$	1.4224.					
^d Relativistic, using BF(R) and $\tau = 1.56$ ns							
^e Reader and Corliss, Ref.[26].							
f Wahlgren <i>et al.</i> , Ref.[27].							

