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A diagrammatic procedure is described, by which the time dependence of the population of
any level in a decay scheme of arbitrary complexity can be prescribed directly in terms of
transition probabilities and initial populations, without specifically solving the determining

differential equations.

INTRODUCTION

Many problems in atomic and nuclear physics
are concerned with quantum energy levels which
decay downward at a rate proportional to the
population of the decaying level. The instanta-
neous population of a given level is determined by
its transition probabilities, as well as the transition
probabilities and populations of the levels above
it which, either directly or indirectly, decay into
it. Thus, the population of a given level can be
determined as a function of time, initial popula-
tions, and transition probabilities by the solution
of a set of coupled differential equations. Special
solutions of these differential equations, with only
one or two contributing upper levels, or with only
a few nonvanishing initial populations and
transition probabilities, are presented in many
textbooks on elementary nuclear chemistry,!'? and
in many recent research reports on atomic
spectroscopy.?* For complicated decay schemes,
the calculation is straightforward but can become
- very tedious.

It is possible to write the population equation
for any decay scheme as a decomposition into the
individual cascade contributions, grouped accord-
ing to the number of steps in the cascade. All
members of such a group correspond to the same
generic cascade diagram, and have the same
generic solution in terms of general level param-
eters. The solution for a specific decay scheme
can be formed by summing the solutions cor-

11, Kaplan, Nuclear Physics (Addison-Wesley Publ.
Co., Inc., Reading, Mass., 1963), Chap. 10.

t R. D. Evans, The Atomic Nucleus (McGraw-I1ill Book
Co., New York, 1955), Chap. 15.

3 W. S. Bickel and A. S. Goodman, Phys. Rev. 148, 1
(1966). :

¢ M. R. Lewis et al., Phys. Rev. 164, 94 (1967).

responding to all possible cascade diagrams within
the decay scheme in question. Thus, the time
dependence of the population of any level in a
decay scheme of arbitrary complexity can be
prescribed directly in terms of transition proba-
bilities and initial populations, without specifically
solving the determining differential equations.

Exposition of the cascading decay process in
this manner not only provides a mnemonic for
prescribing level * populations, but is also of
pedagogic value, since it permits a complex
mechanism to be visualized as a large number of
simple and independent mechanisms proceeding
simultaneously.

I. MATHEMATICAL SOLUTION

Consider a set of levels labeled consecutively in
increasing order of energy from 1 to m. The
population at time ¢ of the jth level is denoted
N;(t), and the transition probability between
levels 7 and & is denoted Aj;. The differential
equation for the population of the nth level is
given by

n—1

AN, /dt=35 Ni(t)Aw—Na(t) 20 Anp. (1)
t=n-+1 I=1

The decay constant «; (the inverse of the mean-

life) of the level j is defined as the sum of the

transition probabilities between the level j and all

levels below it.

j—1

aj= D Ajs. 2)

=
The differential Eq. (1) can be converted to an
integral equation by use of the integrating factor
exp (axt) . Performing the integration and exchang-
ing the orders of integration and summation, the
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" integral equation for the population of level n is

Na(t) = exp(—aat) [Nn(0)+ i kAcnf

$=n+1 0

tdt' exp(a,,t’)N;(t’)] . (3)

Since the level population occurs on both sides of the equality, the equation can be successively iterated
to yield a finite (for finite m) series of nested sums and nested integrals. The iterated expression becomes

N.(t) = exp(—anl) {N,,(O)—l— i N:(0)A:m /t dt’ exp[ (an—ai)t’]
0

t=n+1

m—1 m t t’
+ 3 3 Ni0)Andm f dt’ exp[[ (an—ai)t'] / dt" exp[ (ci—a;) "]
0 0

t=n+1 je=i+1

m—2 m—1 m

+ X 2 X

t=n+1 j=itl k=j+l

X /:' dt"’ exp[(ai—e;)t"] ‘/;

This series has several interesting features.
First, all integrals are standard exponential forms
and can be performed exactly. Second, the order
of each term is specified both by the depth of
nesting and the number of transition probability
product factors. Third, the lower limits of the
more deeply nested sums restrict the upper limits
of sums of shallower nesting within a given term.
Thus, the series terminates with the term of order
(m—n), where the upper and lower limits coincide.

A physical interpretation can be achieved by
noticing that each order of the series in Eq. (4)
contains all those cascades which move from
initial levels to the level of interest in a number of
steps equal to the order of the term. To emphasize
this identification we denote each order by a sum
of labeled diagrams, enclosed in curlylbrackets,
which depict the cascade appropriate to that
order. This diagrammatic statement - of the
population Eq. (4) is shown in Fig. 1.

{i—n}= N:(0)An[exp(—ait) / (an—as) +exp(—ant) [(oi—an)].

‘ ¢
Ni(0) AnsA ;A in f dt’ exp[[ (an—as)t']
0

4

a'”’ exp[(aj—ak)t"’]-l—etc.} . @)

m-

| m i
iEoi ]%p{—rl:i}
. mz-z m-l m : "
innel ]-?q..%..{?['l.} + o0 4 {m-n steps f

T,

N = NS o BT

Fia. 1. Diagrammatic decomposition of a level population
into its cascade contributions.

Comparing Fig. 1 with Eq. (4), it is clear that
each diagram represents a well-defined and
exactly integrable expression. The expression is
generic to its diagrammatic order and can be
computed in terms of transition probabilities and
initial populations of arbitrarily labeled contri-
buting levels. Further, these expressions can be
canonically formed for arbitrary order.® The
diagrammatic expressions for the first, second,
third, and (m-n)th orders are tabulated below.
(The diagrammatic symbols are written serially
for typographic purposes.)

(5)

{j—i—n} =N;(0) A ;A mlexp(—ait) / (ai—e;) (an—ay) +exp(—ait) / (aj—ai) (an—a)

+exp(—ant) /(aj—a) (@i—an) ] (6)

{k—sj—i—m} = Ni(0) AriA jiA [ exp(—out) / (a5 —au) (ors— ) (an—ate)
+exp(—ast) /(ax—a;) (@i—a;) (an—a;) +exp(—ait) / (ar—ai) (o5 — i) (an—o;)

m—1 m
{m_.?. «+—n} = N.(0) [H Am;] ' [exp(—ajt)/

t=n

11 (ex—ay)].

Py

+exp(—ant) / (ar—an) (j— o) (i—atn) 1. (7)

(8)

s H. Bateman, Proc. Cambridge Phil. Soc. 16, 423 (1910).




CALCULATION OF CASCADING LEVEL POPULATIONS

Thus, the solution to a specific problem is
reduced to counting and labeling all possible
cascade diagrams of each order contained in the
decay scheme of that problem, and substituting
the appropriately labeled canonical expression for
each diagram. The technique is best illustrated by
a sample calculation.

II. SAMPLE CALCULATION

As an example of this technique, let us compute
the population of a level (denoted by 3) which is
fed by three upper levels (denoted by 4, 5, 6) and
which decays into two lower levels (denoted by
1, 2). The level scheme, with the transitions
contributing to the population of level 3 indicated
according to the order of the cascade, is shown in
Fig. 2.
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Oth Ist 2nd 3rd

Frg. 2. Sample decay
scheme, with the tran-
sitions contributing to the
population of level 3 indi-
cated according to the
order of the cascade.
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Summing . all possible diagrams which can
cascade into level 3, the population is represented
by
N;(t) =N3(0) exp(—ast) + {6—3} + {53}

+ {43} + {6553} + {6—4—3}
+ {5—4—-3} + {6—5—4—3}. (9)

Substituting the appropriately labeled canonical
expression corresponding to each diagram,

No(1) = N+(0) oxp(—ast) 4 No(0) Aug [exp( —at) exp ( —ast) ]
(s~ a) (o —as)
. exp(—ast) . exp(—oast) ] [exp( —ad) | exp(—ast)
+0 [ R+ TR+ [ + R
exp(—aet) exp(—ast) exp (—as) ]
+N6(0) AesAss [(as—-ae) (as—ag) = (as—os) (s—as)  (as—as) (as—as)

exp{ —agt)

exp{ —aut)

+Ne(0) Aesd s [

(0‘4— aﬁ) (a3 - aﬁ)

exp( —ast)

exp (—ast) ]

(as—at) (s —awg)

exp{ —adt) exp(—ast)

+N5(0) Ased 3 [

(as—a5) (s — )

exp (—ast)

(aﬁ_a3) (C{4—- a3)
]

(s—as) (as—as) ~ (as—as) (au—as)

exp(—ast)

+Ne(0) AosAssd s [

exp(—aat)

(a5—ae) (Ot4—ae) (053—-045)

(as—as) (as—as5) (a3 —as)

exp ( — agt)

(aa—a4) (aa—a4) (aa—a4)

]. (10)

(as—as) (0[5— as) (a;—- Ots)

Since levels 1 and 2 occur only through the sum as=Agy+As, the expression is valid for any
multiplicity of levels below level 3. Notice that the time dependence of (10) resides in four
exponential decay terms: one for the level of interest, and one for each level cascading into it.
By regrouping and factoring, the coefficient of each exponential can be written in terms of initial

populations and transition probabilities.




