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An expectation value formulation of the perturbed Kepler problem
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A classical formulation of the nonrelativistic Kepler problem in terms of expectation values of
powers of the radial coordinate » is presented. Perturbations to this problem arising from
relativistic corrections to the kinetic and potential energies, multipole moments of the central
potential, other confocal orbitals, etc. can be written in terms of powers of r and thus be accounted
for through these expectation values in a simple and pedagogically transparent way. Macroscopic
and microscopic examples are treated as special cases of this common formulation.

L. INTRODUCTION

The advance of the perihelion of the planet Mercury'~>
and the term structure of atomic spectral lines®® are sub-
jects often included in a first course in elementary modern
physics. They are, however, usually presented using quite
different mathematical formalisms, and relationships
between them (if included) are reserved for a discussion of
the “correspondence limit” of quantum theories.>!! Much
of the difference in the presentation arises not from quan-
tum mechanical effects in the microscopic case, but from a
nonessential heuristic tendency to describe macroscopic
systems by instantaneous quantities and microscopic sys-
tems by time-averaged expectation values.

Undergraduate students typically have a knowledge of
the Newton’s law formulation of mechanics and the techni-
cal use of quantum mechanical operations, but the connec-
tion between the two through Hamilton-Jacobi methods is
not made clear until graduate study. For nearly periodic
systems it is possible to present both macroscopic and mi-
croscopic systems in a unified and pedagogically transpar-
ent exposition using orbit-averaged expectation values.

It will be shown that expectation values for powers of the
radial coordinate in the Kepler problem can be exactly de-
scribed by a general algebraic formula. This result will be
applied to compute perturbations to the problem arising
from relativistic corrections to the kinetic and potential
energies, from multipole moments of a general central po-
tential, and from other confocal orbitals.

II. EXPECTATION VALUE FORMULATION OF
THE CLASSICAL NONRELATIVISTIC KEPLER
PROBLEM

Gravitational systems in a nonrelativistic attractive 1/7
potential are usually cast in terms of Kepler’s three laws,*
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1/r=[14 (1 —b%a*"?cos §la/b? (1)

rz_(_iiz 2mab ’ 2)
dt T

r=2ma*"*(m/k)""?, (3)

where r and 8 are the standard two-dimensional polar co-
ordinates, a and b are the semimajor and semiminor axes of
the elliptic orbit, = is the period of the orbit, — k is the
potential energy at unit radius, and m is the orbiting mass.
(In standard symbols, Kk = GMm for gravitation and
k = — Qg/4me, for electrostatics.) Since the standard re-
duction to center of momentum and relative coordinates
separates only in the lowest nonrelativistic approximation,
an infinitely massive central attractor will be assumed
throughout. This orbital locus approach is not essential to
the classical problem, which can be very concisely de-
scribed in terms of expectation values in closer analogy
with the corresponding quantum mechanical problem.
The orbital time average of integer powers of the radial
coordinate can be converted to an angular average through

- Eq. (2),

() = ertr‘z 1

T 2mab

and can be further reduced, using Eq. (1), to

2543 T 2
(ry=2 f d0[1+(1—b—2)1/2co_s0]"‘2.
a

ma*t3
(5)

(V]
The basis for the simplicity of the formulation presented
here rests on recognizing that Eq. (5) can be integrated
exactly, using standard tabulated forms'>'* to obtain a
general algebraic expression. Depending upon whether
— 5 — 2 is positive or negative, the trigonometric integral
in Eq. (5) corresponds either to formula 3.661 — 3 or

2
J dor+? (4)
0 .
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3.661 — 4in the integral tables of Ref. 12, where it is shown
to yield the exact algebraic expression

(I‘s>=bs(b/a)P|:+3/zg—1/2(a/b)~ (6)

Here P;(x) is the Legendre polynomial (in an unusual
physical case where x> 1). Theindexi = |s + 3| — }issym-
metric about s = — 3 and is constructed to yield i =5 + 1
fors> — 1l and i = — s — 2 for s< — 2. The details of the
contour integration by which this result can be obtained are
given in Ref. 13. Equation (6) provides a convenient con-
text for a perturbative study of small deviations from the
Kepler problem, and while the integral was known to (and
applied to planetary motion by) Laplace prior to 1825,
the application described here appears to have been over-
looked until recently.®
We define the unperturbed potential energy as

Vo= —k/r (N
and the nonrelativistic kinetic energy as
To=p/2m. (8)

Notice that the alternative definition mv?/2 for the nonre-
lativistic kinetic energy is equivalent to Eq. (8) only in
lowest order, and yields a different expansion when higher
order corrections are included. As discussed in Sec. V, p is
the quantity appropriate to the Hamiltonian formulation.

The virial theorem* for this system yields a total energy
E,=T,+ V,given by

E0=—(T0>=%(V0)2—k/20. (9
Add to this the expression for the angular momentum L
obtained from Eqgs. (2) and (3),

L =b(mk /a)""? (10)

and it is possible to use these equations to describe pertur-
bations to the systems in very elementary terms.

III, PERTURBATIONS: ENERGY SHIFTS AND
PERIHELION ADVANCE

Small deviations from a Keplerian system can often be
expressed as a perturbative central potential which is given
or approximated by a power law in the radial coordinate

AE=k'r. (11)

The energy of the perturbed system can be approiimated
by

E=E,+(AE) + -, (12)
where the average is taken over the unperturbed orbit
(AE) =k'(r®) . (13)

In atomic systems, perturbations are usually described
directly in terms of these energy shifts. The shift relative to
the unperturbed energy is a useful dimensionless quantity

(AE)/E, = — (2ak'/k)(r) . (14)

The expectation value can be evaluated in terms of @ and b
using Eq. (6). While this is an equally valid description of
the gravitational problem, historical tradition favors its ex-
position in terms of the apsidal advance, which pertains to
the atomic problem only in the correspondence limit. Since
the apsidal advance is determined through observations on
a time scale during which all planets involved have under-
gone many orbital periods, instantaneous orbit positions
need not be considered and a formulation in terms of time-
averaged position probability densities and expectation
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values is quite appropriate to both the microscopic and
macroscopic examples. The classical advance of the perihe-

lion corresponding to the energy given in Eq. (12) can be

deduced quite simply. Using the Hamilton—Jacobi angle-

action variable formulation of perturbation theory, the

precessional angular velocity {w) is given by [see Eq.

(11.42) of Ref. 4]

_ (9 (AE)) 5
<w) ( aL E, = const ’ ( )

Since E, corresponds to 1/a [Eq. (9)] and L corresponds
at constant E;to b [Eq. (10) ], the precession (in rad/rev)
can be written [using Egs. (3), (9), (10), (13),and (15)]

as

271 $

a’k (a<r )) ' (16)
k ab a = const

This derivative can be evaluated formally from Eq. (6)
using the differential properties of the Legendre polynomi-

al
( b /. . s+ 1) i (X)

{(w)r=2m

ix

+ B x P ~P,®]), (D
where x = a/b and i = |s + 3| — 1. Equation (16) can be
evaluated for specific values of @ and b either by numerical
computation of the Legendre polynomials in Eq. (17), or

by functional evaluation and differentiation of Eq. (6).

1V. EXPLICIT VALUES FOR ¢ AND »

The formulation presented here is independent of
whether @ and b are interpreted as semiaxes of a physical
ellipse or as discrete quantum mechanical eigenvalues. In
the gravitational case the definition of @ and b from an
observable ellipse is clear, but in the quantum mechanical
case @ and b can also be given a precise and rigorous mean-
ing. To see this, we begin by considering the semiclassical
approximation, but we will show that the representation of
a and b can be generalized to be fully quantum mechanical.
In the Einstein-Keller—Brillouin semiclassical formula-
tion,” the semimajor and semiminor axes are given by

a=agn’ (18)
and
b=agn(l +1), (19)

where a, is the Bohr radius (5.29 nm) and » and / are the
principal and orbital angular momentum quantum
numbers. Semiclassical values for {r*) can be obtained
through the substitution of Egs. (18) and (19) into Eq.
(6). Fors =0, — 1, and — 2 the semiclassical and quan-
tum mechanical resuits are identical and Eq. (6) is correct-
ly specified quantum mechanically by Eqs. (18) and (19).
Furthermore, the corresponding quantum mechanical ex-
pressions can be formed from the semiclassical results
through a simply structured substitution for 5’/ when
[il > 1. In this substitution, the expectation value of L
raised to higher powers is not obtained by successive multi-
plication by (/ 4 1), but from formulas prescribed in Eqgs.
(19) and (18) of Ref. 6. For example, the replacement for
b3is

b3 (agm)M +HU + 1), (20)
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Table 1. Data used in examples. For conversions from rad/rev to arcsec/century, the period of Mercury is 0.2409 yr.

System a a/b k/mcta
Hydrogen 1s 1a, 2 1/137 = 5.33x10°°
Hydrogen 2s 4a, 4 1.33%x10°°
Planet Mercury 0.387 AU 1.022 2.55%x107®

Thus if powers of b are interpreted to represent the appro-
priate values, Eq. (14) represents the graviational and both
the semiclassical and quantum mechanical atomic prob-
lems as an explicit function of @ and 5. Equation (16) shifts
the power of b and should be considered only in the corre-
spondence limit. For examples that will be treated below,
values for a and b and the dimensionless strength param-
eter k /mc?a are given in Table 1. Since the perturbation is
relatively small for the planetary case the unperturbed val-
ues of @ and b are approximated by their physical values.

V. RELATIVISTIC CORRECTIONS TO THE
KINETIC ENERGY

The first correction we shall consider is the relativistic
Kkinetic energy, which can be written as

T=[(me*)?+ (pc)?1V* —mc*. (21)
This can be binomial expanded to yield
T=mc*[1+ {(p/me)? — {(p/me)* + -] —mc?
' ‘ (22)
and can be simplified and rewritten using Eq. (8):
T=T,—T3/2mc* + . 23

Notice that Eq. (21) could alternatively have been written
in terms of the velocity and expanded to obtain a series in
powers of mv?/2 with coefficients different from those in
Eq. (22). The two expansions are equivalent if the relativis-
tic relationship between momentumi and velocity is insert-
ed, but the Hamiltonian formulation is based upon partial
derivatives with respect to momentum (with other quanti-
ties held constant), not velocity, and these are not relativis-
tically equivalent. Thus the momentum formulation of Eq.
(22) provides the more convenient expansion.

The perturbation defined in Eq. (12) for this case is giv-
en by

(AE) =(T) —(T,) = —(T}{)/2mc*. (24)

This can be written in terms of known quantities using
E, =T, + E, by considering

(T(2)> = ((Eo— Vo)z) =E(2) - 2E0(V0> + (VS)- (25)
Using Eqs. (9) and (25), Eq. (24) becomes

(AE) = — (1/2mc*) ({V3) — KVo)?) + - (26)
and using Eq. (6), the correction to the energy is written as

(AE) = — (k*/2mc?)(1/ab — 3/44%). 27)
The relative splitting is

(AE)/E,= (k /mc*a)(a/b —3}) (28)
and the perihelion advance is

{w)T = 7wk /mc*a)(a/b)>. (29)

Examples can be computed using the data in Table I. For
the 1s electronin hydrogen Eq. (28) yields 6.66 < 10~ and

629 Am. J. Phys., Vol. 55, No. 7, July 1987

Eq. (29) yields 6.69x 10~* rad/rev. For the planet Mer-
cury Eq. (28) yields 6.94X10™° and Eq. (29) yields
8.37x 1078 rad/rev (7.2 arcsec/century). These equa-
tions thus describe both Sommerfeld’s fine structure cor-
rections to the Bohr atom and the special relativistic mass
contribution to the advance of the perihelion of Mercury.

VI. RELATIVISTIC CORRECTIONS TO THE
POTENTIAL ENERGY

A. General relativity

When general relativistic methods are applied to the
gravitational problem, the Schwarzschild solution of the
Einstein field equations corresponds to a perturbation of
form*

(AE) = — [k L%/ (me)*1(r™3). (30)

The quantity L ? in the numerator of Eq. (30) corresponds
numerically to the orbital angular momentum, but as
Goldstein has cautioned (Ref. 4, p. 512), in this context L ?
is a constant and not a canonical momentum and is not
acted upon by the derivative in Eq. (15). The perturbation
potential is a function of dynamical variables only through
{r*) as given in Eq. (16). In the general relativity case, the
relative energy separation from Eqgs. (6), (12), and (30) is

(AE)/E,=2(k /mc*a)(a/b) (31
and the perihelion advance from Egs. (6) and (16) is
(w1 = 6m(k /mc*a)(a/b)>. (32)

For the planet Mercury this gives a precession of its perihe-
lion of 43 arcsec/century. This is in agreement with obser-
vation, but is six times the amount predicted by special
relativistic corrections to the kinetic energy in Sec. V. An
additional special relativistic' correction has been pro-
posed’ that invokes the principle of equivalence to obtain a
velocity-dependent gravitational force. This method re-
duces the discrepancy between special relativity and obser-
vation to a factor of 2 and the development can be carried
through by the methods discussed here. Factors of 2
between results computed by special and general relativity
often occur and have recently been discussed by Strand-
berg.” There are, however, subtleties associated with this
velocity-dependent potential that make it less suitable as a
pedagogic example.

B. Spin-orbit coupling

For the electromagnetic interactions, the relativistic cor-
rections to the potential energy involve magnetic interac-
tions. Through a standard development (Ref. 15 and the
citations therein) using the Biot-Savart Law, the anoma-
lous magnetic moment of the electron, and the Thomas
precession, this leads to a further correction of the form
(with the effect of the anomolous moment of the electron
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incorporated into the constant k)
(AE) = [k (L:S)/2(mc)?](r™?), (33)

where (L+S) involves quantum mechanical expectation
values for the orbital and spin angular momentum opera-
tors. It is worth noting the similarities between Eq. (33)
from spin orbit and Eq. (30) from general relativity, ob-
serving that both L ? and (L-S) have dimensions of angular
momentum squared.

In the case of the spin-orbit energy, the potential differs
from other examples given here, since, unlike orbital angu-
lar momentum, electron spin cannot be described in terms
of spatial coordinates or ellipse axes. Thus while the quan-
tization conditions in {(#*) can remain implicit in ¢ and b,
the quantity (L-S) introduces a partial quantization. If we
consider the difference between two spin-| states that differ
only in total angular momentum (in units of Planck’s con-
stant #) j =1 + }and j=/— 1, Eq. (33) becomes (using
the vector model of angular momentum)

(AE(l +1/2) — AE(I —1/2))
E,
2
=_ﬁ(l+1/2)i. (34)
(me)* b3
The difference in the classical perihelion advance for these
two orbitals corresponds to

AMo)r= —{[6x #( + 1/2)]/(mc)*}(a*/b*). (35)

Equations (34) and (35) can be further simplified by sub-
stituting (#/ mc)? = ka,/mc*. The fine structure of the 2p
levels in hydrogen can be computed using Table I and Eqgs.
(18) and (20). This yields 1.33x 10> for Eq. (34) and
2.97x 10~ * rad/rev for Eq. (35).

When the spin orbit and relativistic kinetic energy terms
for the hydrogen atom are combined, the resulting expres-
sion can be reduced to a form identical to the relativistic
kinetic energy alone, Eq. (27), except that the orbital an-
gular momentum quantum number / is replaced by the to-
tal angular momentum quantum number j. This corre-
sponds to the result of Dirac theory to order (E,/mc”)>.

VII. CORRECTIONS FOR HIGHER ORDER
MULTIPOLE MOMENTS

In the atomic case, the core electrons can acquire in-
duced dipole and quadrupole polarization moments. De-

noting the dipole and quadrupole polarizabilities by «;, and
a,, the perturbation is®

(AE) = — Lk [au{r™) +a,(r %], (36)
which, using Eq. (6), becomes
1 b?\ a
AEY = — —k 3
(AE) 2 [a"( az) TE

b 2 b 4 a3
+a(3-0 i) 5] on
Perturbations can also arise due to permanent quadru-
pole moments (solar oblateness, nuclear hyperfine struc-
ture, etc.) of the central potential. For an orbit in the equa-
torial plane of the central mass M, this potential is of the
form

(AE) = 1kQ (r3) = kQ /2b°, (38)

where Q is the quadrupole moment in units of the central
charge or mass.

VIII. CORRECTIONS FOR OTHER PLANETS OR
CONFOCAL ORBITALS

Perturbations on a planetary orbit due to other planets
can also be described by this formalism. Since these effects
are usually measured over hundreds of years, the planets
involved have completed many orbits, and the time average
approach is appropriate. The situation is very similar to the
quantum mechanical case, in which instantaneous posi-
tions can be replaced by time-averaged position probability
densities. As a simple pedagogic model, a procedure first
utilized by Gauss'® is followed in which each perturbing
planet is here replaced by a uniform circular ring having
the same mass as the planet and a radius corresponding to
the appropriate moment of the planet’s orbit about the sun
(cf. also Ref. 3). The potential at any point in space due toa
ring of charge or mass is given by"’

© r!

V(r,0) =kj;0;7>§r—l}’j(cosa)Pj(cos 0). (39)
where a and @ are the angles between the axis of the ring
and the source and field points. Within the plane of the ring
a = 6 = 77/2. We denote the mass and radial coordinate of
the ith perturbing planet by M, and R; and the mass of the
sun by M._.'® For a perturbing planet interior to the orbit

Table I1. Precession of the perihelion of Mercury (in arcsec/century) due to perturbations of the other planets. Calculations using the simple ring
model of Sec. VIII are compared with the detailed calculations of Clemence,'® who compares the observed perihelion advance of 5599.74 arcsec/
century with calculated contributions of 5025.65 from equinox precession of the Earth, 531.50 from perturbations by other planets, and 43.03 from

general relativity.

Ring model

Perturbing planet one term three terms 50 terms Clemence'?
Venus 148.298 267.359 293.237 277.856
Earth and Moon 69.715 94.696 96.018 90.038
Mars 2.130 2.434 2.437 2.536
Jupiter 155.948 157.646 157.646 153.584
Saturn 7.586 7.611 7.611 7.302
Uranus 0.143 0.143 0.143 0.141
Neptune 0.044 0.044 0.044 0.042

Total 383.863 529.933 557.136 531.499

630 Am. J. Phys., Vol. 55, No. 7, July 1987

Curtis, Haar, and Kummer

630



considered, the potential is given by the infinite series
(AE) = — (AM,/M)[(r~") + (DHRD{r?)
+ (I*3/2*)(RH ) + -] (40)

This series for the interior planets corresponds to a multi-
pole expansion and is a generalization of the quadrupole
moment given in Eq. (38). The monopole moment in Eq.
(40) could be incorporated into the unperturbed solution
to improve the values of @ and b used in higher moments.
For a perturbing planet outside the orbit considered, the
potential is given by the infinite series

(AE) = — (kM;/M)[(R7 ) + ()R ) (?)
+ (1*3/2%)2(R 7)) + -+ 1. (41)

We have utilized Eq. (41) to make an illustrative deter-
mination of the perturbations on the orbit of the planet
Mercury due to all the other planets. The advance of the
perihelion corresponding to Eqs. (41) and (16) is, to the
lowest order,

()7 = (37/2)(M,/M,) (@b /B,), (42)

where B, is the semiminor axis of the orbit of the ith per-
turbing planet. Additional terms in Eq. (41) were comput-
ed using a computer algorithm for generating Legendre
polynomials in Eqgs. (6) and (17). Table II compares the
predictions of the expansion in Egs. (16) and (41) with
each other and with the more sophisticated calculations of
Clemence,' including the first term [Eq. (42)], the first
three terms and the first 50 terms. Agreement is quite good
for planets beyond the Earth, irrespective of the number of
terms included. For corrections due to Venus and the
Earth the agreement first improves, but then worsens. In-
clusion of terms beyond the first correction of Eq. (42) is
not quantitatively justified here since higher order contri-
butions to Eq. (12) will mix perturbation and multipolar-
ity orders. However, even if only the lowest correction of
Eq. (42) is included, this approach does provide a useful
pedagogic device for the exposition of these perturbations.
As another application, a variation of this approach could
be used to model inner electron screening in optical atomic
spectra and outer electron screening in x-ray spectra.

IX. DISCUSSION

The use of semiclassical Bohr orbits as a pedagogic intro-
duction to atomic physics is often criticized as involving an
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archaic and unnecessary step in the formulation of modern
quantum theory. However, similar arguments could be
made concerning the use of forces and instantaneous co-
ordinates as the obligatory introduction to the study of
macroscopic mechanics. Through the use of expectation
values and energy perturbation expansions, real analogies
between macroscopic and microscopic systems emerge
which are independent of quantization considerations and
which provide a unity and economy of presentation.
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