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NEW CASCADE ANALYSIS TECHNIQUES FOR DETERMINING
SPONTANEOUS ATOMIC TRANSITION PROBABILITIES

L. J. CURTIS*, R. M. SCHECTMAN, J. L. KOHL, D. A. CHOJNACKI and D. R. SHOFFSTALL
University of Toledo, Toledo, Ohio, U.S.A.

Several new analysis techniques which account for the effects of
cascades in the measurement of atomic transition probabilities
have been developed at the University of Toledo, and will be
described here. These techniques involve the incorporation of
information from the direct measurement of the decay curves of
cascading transitions into the analysis of the decay curve of the
main level of interest.

The traditional curve fitting techniques, as well as the new
analysis techniques, are investigated by the use of computer
simulated data containing various numbers of known expo-
nentials, A diagrammatic mnemonic which trivially generates
the theoretical decay curves for cascade schemes of arbitrary
complexity will be described.

The traditional curve fitting techniques are extended to include
constraints imposed by the coefficients in the theoretical decay
curve, which can be measured in terms of relative intensities of
the cascading transitions.

The population differential equation is converted to an integral

1. Introduction

The measurement of atomic transition probabilities
has long been complicated by cascade repopulation of
the level being studied after its initial excitation. To
formulate the problem, consider a set of levels which
have some initial population N,(0). A level n is de-
populated by spontaneous transitions to lower levels f,
but is repopulated by cascades from higher levels i. The
experimentally measured quantity is the intensity of
light emitted in the transition, and is given (in
photons/sec) by

Inf(t) = Nn(t)Anf’ (l)

where A,, is the spontaneous transition probability
which we wish to determine. The sole time dependence
of the intensity resides in the population of the decay-
ing level, so that all transitions from the same upper
level will have the same shape as a function of time.
Thus, relative transition probabilities (branching ratios)
can be obtained from ratios of intensities of transitions
from the same upper level measured at the same point
in time, or at some equilibrium population. In order to
determine absolute transition probabilities, it is neces-
sary to consider the level population, which is governed
by the differential equation

n—1

aNyjde= 3 NOA=NO T Ay @

i=n+1

This equation includes the effects of cascades and

equation involving only experimentally measurable quantities
and the desired transition probability. Integrals over some
arbitrary time interval of the decay curves can be photometrically
measured, and given a common normalization through a wave-
length relative efficiency calibration of the detection system.
Integrated decay curves of all transitions, either directly into or
out of the level of interest, can be summed in a manner which
determines its transition probability. By varying the choice of
time interval it can be verified that all contributing transitions
have been correctly included. A variation of this technique allows
the construction of the decay curve of an unmeasured cascade,
provided the transition probability of the level into which it
cascades is known. This variation can be used to investigate
radiationless transitions and transitions outside the range of
available detectors. Further, if there is additional a priori in-
formation concerning the shape of the unseen cascade decay
curve, both its lifetime and that of the level into which it cascades
can be determined.

spontaneous emission, but neglects effects such as
stimulated emission, absorption, and collisional de-
excitation. The lifetime of a level 7; is the e-folding
time which would exist if there were no cascades, and
its inverse, the decay constant a;, is the sum of transi-
tion probabilities taken over exit channels, thus

j=1

litj=o;= f; Ajy. (3)

2. Polarization and cascading

In addition to compounding exponential depen-
dences, cascades can introduce more subtle difficulties
if polarization is present. Since the intensity is usually
experimentally sampled within some small solid angle,
one must exert care that there are no time dependent
geometric factors which alter the proportionality be-
tween the light sampled and the total light emitted into
all 4z sterad. This can occur if degenerate substates
are not statistically populated, but have a preferred
direction inherent in the excitation, such as the beam
axis'). Cascade repopulation may then wash out this
initial sample polarization as a function of time, hence
washing out the asymmetry in the angular distribution
and in the direction of the electric field vector of the
emitted radiation. Thus, apparent time variations in
the intensity can arise through a misinterpretation of
the radiation pattern. The angular distribution of
* Presented the paper.
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emitted radiation for a polarized sample is given by

diy o o 1 ,.(z)[1 —P(t) cosZG:I
o 0= —pyn ) )
where
_ -5
PA)= 1+ 120 )

and I))(r) and I(r) are the intensities measured at 90°
to the axis of polarization through polarizing filters
oriented parallel and perpendicular to the axis of
polarization.

This angular distribution is plotted in fig. 1 for
various values of the polarization. Notice that for a
sample of polarization P= +1, viewed at 90°, washout
to isotropy causes a 339, change in intensity, from 1.5
to 1.0, with no change in the total integrated intensity.
Further, variations in detection efficiencies for light of
differing polarizations can lead to similar apparent
intensity variations during a cascade washout of
polarization.

We have made preliminary measurements through
polarizing filters aligned parallel and perpendicular to
a pulsed electron beam source, and obtained decay
curves differing by 15%,. Since instrumental polariza-
tions are time independent, this implies a cascade
washout of an initial polarization, which could lead
to an erroneous lifetime determination.

The cascade analysis techniques which will be
described below will neglect polarization effects, but
could, with slight modification, be adapted to include
such effects.

3. Threshold measurements
The cascade problem could be circuamvented through

P=+1
1.5
1-Pcos'®
1-3P .
Y p=0
P=-1/2
p=-1
05
1
- s 1
1.0 a 4} i 1.0
cos 8

Fig. 1. Angular distribution of radiation as a function of
polarization.
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threshold excitation of the sample, exciting no levels
above the level of interest. This technique has a number
of drawbacks. For one thing, energy regulation is
difficult at tens of electron volts. In addition, excita-
tion cross sections for the level of interest become
vanishingly small near threshold, reducing measured
light outputs. Further, polarization effects may be
more pronounced near threshold. Finally, threshold
excitation is not feasible for ionized atomic spectro-
scopy studies such as those of beam foil, and cascade
effects must be accounted for.

4. Curve fitting techniques

In many cases curve fitting of decay curves to
exponential forms is a quite satisfactory method of
analysis. Further, urgent requirements for approx-
imate lifetimes have often led to the acceptance of
some inaccuracy, and allowed wider use of curve
fitting. Fits to forms including more than two exponen-
tials are usually not reliable, but there are often cases
where one and two exponential forms are appropriate.
Cascades become negligible if their lifetimes are either
extremely long or extremely short compared to the
transitions of interest, and a single exponential,
analytically-determined fit can be made to the data.
If the cascades have lifetimes reasonably different from
that of the transition of interest they can often be
included as a single effective exponential and a two-
exponential fit can be made. A two-exponential fit is
not analytically determinable but can be made by a
search routine such as the Method of Steepest Descent,
the Gauss-Seidel Method, or appropriate Monte Carlo
Methods. Such a fit is shown in fig. 2.

5. Exponential forms

The exact time dependence of a cascade level scheme
contains many exponentials. A sample decay scheme is
shown in fig. 3. In addition to the exponential term for
the transition of interest, there is also one exponential
term for each level which cascades either directly or

indirectly into the level of interest. (Clearly some of the

transitions indicated on the sample scheme will be
forbidden by selection rules, but indirect cascading will
still contribute exponential terms.) These exponential
forms are easily determinable. We have shown,
through an iteration of the differential equation and
an exchange of sum and integrals, the integrals can be
exactly performed to arbitrary order?). This allows an
interpretation in terms of a diagrammatic decomposi-
tion, where cascades of various orders can be con-
sidered separately and the exponential dependence
written as a sum of canonical forms, as shown in fig. 4.
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Fig. 2. Two-exponential fit to experimental data.

A sample calculation is shown in fig. 5. The similarity
between various first order cascades and various second
order cascades infers the form of cascades of higher
order, and one can trivially write out the exponential
dependence of a cascade scheme of arbitrary com-
plexity.

6. Simulation of data not amenable to fitting

Using these multi-exponential forms we have con-
structed simulated data which are not amenable to
curve fitting techniques, and sought to test other
techniques by which it might be analyzed. A computer
simulated three-exponential curve, blending levels of
lifetimes 20, 80, and 200 ns, with initial population
ratios of 1:2:2.5 is shown in fig. 6. Statistical errors of

ORDER
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LEVEL
Nood oo

Fig. 3. Sample decay scheme.

nominally 1%, (but varying, as intensity decreases with
time) have been introduced. Timing errors can also be
important, but have not been included here. A two-
exponential fit, using the computer program “Gauss-
haus” (modified for exponentials by H. G. Berry), to
this three-exponential data is shown on fig. 7. The x2
probability indicates a 979, goodness of fit, but the
values obtained are a high estimate of the shortest
lifetime and a low estimate of the longest lifetime. We
repeated this with statistics of 1/10th9,, which are
much better than are usually obtained experimentally,
and were able to obtain a > probability which indi-
cated we had chosen the wrong functional form, but
with the same errors in lifetimes. If the statistics were
reduced to 109,, a one-exponential fit and a two-
exponential fit differed little in x> probability. Fig. 8
shows a three-exponential fit to the 1%, simulated data.
Notice that ¥ probability is slightly improved but the
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Fig. 4. Diagrammatic cascade decomposition of a level popula-
tion.
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Fig. 5. Sample calculation, using diagrammatic mnemonic.
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intensity ratios of 1:2:2.5 with nominally 1% statistical errors
simulated. Fig. 7. Two-exponential fit to 3-exponential simulation.
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Fig. 8. Three-exponential fit to 3-exponential simulation.

lifetime sought is wrong by a factor of 2, being 11 ns
rather than 20 ns. Better statistics give the same y2
probability and improve the lifetime only slightly. The
109, statistical data is shown in fig. 9, and a three-
exponential fit, given the correct initial values, diverges
to a better y* with lifetime values off by factors of 3.
These results are summarized in table 1. Let us now
consider alternative methods to this exponential fitting
technique, which may enable us to analyze this example
which was not correctly analyzed by curve fitting.

7. Constrained fits

The number of parameters involved in most exponen-
tial fits is twice the number of exponential terms, since
it includes one coefficient and one lifetime for each
exponential term. As we have seen, the coefficient
actually contains measurable quantities and lifetimes,
if the cascade scheme is known and if the cascade
wavelengths are in a region accessible to detection
equipment. If indirect cascades are neglected, the
intensity of a transition can be written

> BI,(0 ot
121(t}—l121(0) Zs_Li“Z:I =
T §B112(0)a2 —ait , (6)
i=3

where B is the ratio of the transition probability to the
decay constant, if other lower states exist. It can be
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determined from measured or theoretical branching
ratios (or left as free parameter).

B=A,,/a,. (7

Tf one has a relative wavelength calibration®), the
initial cascade intensities occurring in this equation
can be measured, halving the number of free para-
meters. For a three-exponential direct-cascade scheme,
the intensity is

Bi;,(0)a BI,,(0)«a —
121(t)=|:121(0)— oczzfoiz - a42£o342:|e 2

4| B | ay | Blaz(0)% | —au
0(2 - OC3 “2 - O(4 )
(8)

If I,(2), I3, (0), and I,,(0) are all measurable, the three-
exponential case becomes a three-parameter rather
than a six-parameter fit. Unfortunately, this determina-
tion is greatly complicated if indirect cascades occur,
since their initial intensities are also required. How-
ever, this method can be applied to a two-exponential
fit to reduce the number of parameters from four to
two without this problem, since there can be no
indirect cascading with a single higher level. The inten-
sity is then given by

1) = [121(0) 31322 0)“2]e~az:

®3
BI;,(0)x _
+ _32() 2 e o3t (9)
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Fig. 9. Blend with nominally 10%, statistical errors simulated.
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TABLE 1
Fits to simulated data (z2 = 20 ns).

Fit 109; Stat. 19; Stat. 1/109; Stat.
“T”z xg prob 56,[”2 Xg prob “,5752 xg prob

1 exp 105.4 ns 40% - - — -

2 exp 64.4 ns 53% 47.0 ns 97% 46.5 ns 0.2%

3 exp 53.0 ns 46%; 11.3 ns 99.9% 16.6 ns 99.9%
This technique can often improve the y> probability where
by reducing the number of degrees of freedom. In T
addition, we have found that we can separate two ¢, = . del,,(t), (13)
exponentials differing only slightly in lifetime by use
of the constrained fit. A simulated blend of a 20 ns and D.— T dil, (1) (14)
a 30 ns lifetime with 109, statistics was correctly anal- A

yzed by the two-parameter constrained fit, while a
four-parameter fit saw two identical lifetimes, in-
correctly indicating a single lifetime somewhere be-
tween 20 and 30 ns.

If the intensities of the cascades are sufficient to
follow the decay curves as a function of time, their
lifetimes can also be determined, further reducing the
number of free parameters. However, higher order
cascading complicates this type of analysis, and it is
possible to use another technique which incorporates
the cascade decay curves correctly, without the need
for measuring higher order cascades.

8. Analysis by decay curve integration

If a relative wavelength calibration is available and
it is possible to measure all direct cascade decay curves,
the transition probabilities can be determined by
integrating the decay curves*). To see this let us rewrite
the population equation in terms of intensities. Com-
bining eq. (1) with eq. (2), we obtain

m n—

dI,;jdt !
Sl Y L) - Y L.
nj 1 f=1

J i=n+ =

(10)

If we integrate both sides of the equation, and ex-
change the orders of summation and integration, we
obtain

[Inf(T) - Inj(o)]/Anj

i=n+1

T

:dtli,,(t)—:z: odtI,,f(t). (11)

Solving for 4;; we obtain

— Inj(T) _ InJ(O)

= , 12
nj ;c,.—;p, (12)

are experimentally measurable quantities, and cor-
respond to the total light output, integrated over some
increment of time, for the cascade and down-transition
decay curves. The interpretation is shown in fig. 10.
The transition probabilities are thus determined by a
time averaged balance of the entrance and exit radia-
tion, irrespective of their individual time dependences,
and the initial and final intensities of the level of in-
terest. Experimentally the integrals are easily per-
formed by the electronic logic of a multi-channel
analyzer.

There are a number of notable features of this anal-
ysis technique. Notice that only direct cascades are
involved, with higher order indirect cascading being
included by virtue of the shape of the direct cascade

Tin (1) Ins (D)

N
5

O T o} T
Inj (O)
In; (T)
o T t
An= Inj (O) =TIn (T)

IDt—-ZGC

Fig. 10. Experimental interpretation of intensity integrals.
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Fig. 11. Analysis of simulated data by decay curve integration.

decay curve. Notice also that a good relative wave-
length calibration is essential, so that all integrals have
a common normalization and can be added. Also
notice that overlapping or unresolvable lines which
both cascade directly into the level of interest can be
summed simply by widening the spectrometer slit, since
only sums of integrals are required. However, also
notice that one must measure all of the direct cas-
cades - an erroneous result will occur if even one is
omitted. Fortunately there is a simple alarm mechanism
to check for this. If one varies the integration range and
obtains the same transition probability using many
different areas under the curves, a consistent result will
be obtained only if all cascades have been included.
Fig. 11 shows this type of cascade analysis applied to
the 19, three-exponential simulation shown earlier.
(A perfect wavelength calibration was assumed, al-
though such errors in the normalization of various
decay curves could also have been simulated.) Since

indirect cascades do not enter, the scheme can be
considered as two input channels and one output
channel. The areas under intensity curves (4,2) and
(3,2) are subtracted from that under intensity curve
(2,1), and the transition probability is determined as
shown. This calculation yields the correct answer of
20 ns (+ a few percent) for any integration range of
width greater than 50 ns, verifying that no levels have
been missed. Surprisingly, when this analysis is applied
to the 109, data, which diverged from the correct
values for a better fit, the correct value of 20 ns is
again obtained for any reasonable range of integration.
Thus the incorporation of cascade decay curves into
the analysis of the decay curves of the level of interest
can markedly improve the accuracy of measurements.

This new analysis technique can also be utilized in
several variations for appropriate situations. As one
variation, suppose some cascade is not measurable, but
another transition from the same upper level is mea-

V. EXPERIMENTAL TECHNIQUES
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surable. Both decay curves have the same shape ins
time, so if good experimental or theoretical branching
ratios are available, the desired decay curve can be
obtained from the measurable decay curve through an
appropriate normalization. As another variation, sup-
pose some transition is totally unmeasurable, but the
down transition probability is known. The process can
be inverted to generate the decay curve of the unseen
transition. This allows one to study transitions out-
side the range of existing detectors, as well as transi-
tions which proceed by some radiationless process.
As a further variation, if there is some a priori informa-
tion about the unseen transition (perhaps gained
through a study of another transition from the same
upper level, or some knowledge of populations con-
tributing to second order cascades) it is possible to
determine both the decay curve of the missing transi-
tion and the transition probability of the down-
transition. Specifically, if the missing transition were
known to be single exponential in form, one could vary
the lifetime of the down-transition and seek the mini-
mum value of x* on the fit of the reconstructed missing
decay curve to a single exponential. The three-exponen-
tial simulation example was analyzed this way, as is
shown in fig. 12. Minimum y? implies a 19.1+1 ns
down lifetime, and correctly recoups the missing tran-
sition decay curve, as well as its 200 ns lifetime.

9. Application of the new techniques
This new analysis technique has been applied to a

—r— 4 200ns
)
80ns

E—

DOWN LIFETIME

L. J. CURTIS et al.

measurement of the lifetime of the 2p, level in neon
using pulsed electron beam excitation®). A simple two-
exponential four-parameter fit of the decay curve
yielded 26.2 ns (see fig. 2), much longer than some
reported results near threshold® 7). To apply the new
methods, we must consider the level scheme. The 2p,
level can decay only into the 1ss level, with wave-
length 6402 A. The direct cascades of significant
intensity include eleven transitions with wavelength
between 4712 A and 8377 A, and one transition of
wavelength 11180 A. The decay curves of the down
transition and all cascades except the 11180 A (which
was far beyond the infra-red cutoff of the detector
employed) were measured.

As a first attempt, the unseen 11180 A transition was
neglected, and an attempt was made to determine the
2py lifetime. The aforementioned alarm mechanism
told us this missing transition could not be ignored, as a
different apparent lifetime was obtained for each choice
of range of time integration. We therefore inverted the
process, and used a lifetime of 19.4 ns, obtained in a
threshold measurement by Bennett and Kindlemann®),
and generated the unseen decay curve of the 11180 A
transition. The curve was consistent with being a single
exponential of lifetime 19549 ns, and is shown in
fig. 13.

As another check, all eleven measured cascades and
the reconstructed unseen cascade were fit to one or two
exponentials, giving an initial intensity and a lifetime
for each cascade. Curve fitting errors in the cascades
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Fig. 12. Simultaneous determination of an unseen cascade decay curve and the down transition probability.
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Fig. 14. Blend of the individual components of the intensity decay curve of the 6402 A emission.
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should have a less drastic effect than curve fitting
errors in the transition being studied, and if indirect
cascades are neglected, eq. (6) can be used (with
Bennett and Kindlemann’s lifetime and the initial
intensity of the down-transition) to form a blend of
13 exponentials, which should approximate the mea-
sured 2p, decay curve. This blend, together with the
measured curve, is shown in fig. 14. Agreement is
quite good at short times, becoming somewhat worse
at longer times due to the influence of higher order
cascades. A slightly better fit can be obtained by
adding a flat background as an empirical correction for
higher order cascading.

Since the 11180 A decay curve seemed to be a single
exponential, we investigated the consequences of
assuming it to be rigorously a single exponential, and
varied the 2p, lifetime so as to give the best y? prob-
ability for the 11180 A fit to a single exponential. We
found that the lifetime of the 11180 A transition was
relatively insensitive to this variation, but that the best
fit was obtained with a 2p, lifetime of 22+1 ns, which
is lower than we obtained by direct curve fitting, and
is also more nearly in agreement with the 19.4+0.6
threshold measurement of Bennett and Kindlemann®),
as well as a 22.5+3.1 ns measurement near threshold
by Klose”). We have also introduced the empirical
flat background as a free parameter to correct for

indirect cascading, and found a better x> for slightly
lower values of the 2p, lifetime. At present, we are
applying these methods to a number of other levels
and cascade schemes.

In conclusion, there is a great deal of information
in the decay curves of cascades which bears on the
analysis of the decay curve of the level of interest.
Detailed studies using the methods outlined should
permit greater accuracy and reliability in the measure-
ment of atomic transition probabilities.

Note added in proof: Some authors now reserve the
word blend to denote an unresolved spectral multiplet,
for which exponential coefficients correspond directly
to initial intensities. As it occurs in this paper, the
word blend refers to cascaded levels, for which in-
creased resolution does not reduce exponential multi-
plicity.
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