A~

APPLICATION OF SEVERAL NEW METHODS FOR EXTRACTING MEANLIVES FROM DECAY CURVES

L. J. Curtis

Research Institute for Physics, Stockholm Sweden

Introduction

We shall describe here a number of analysis techniques which we have
recently utilized to extract increased information from beam-foil decay
curves. At the Lysekil beam~foil conference one year ago much concern
was expressed over the systematic errors which can occur if exponentiai.
curve fitted decay curves are repopulated by cascadesl. In addition,
ambiguities exist in the determination of the presence of cascading, as
well as in the identification of the cascade and primary contributions to
the decay curve. We have attempted to develop criteria to quantitatively
specify cascade errors, to devise non curve fitting techniques whiéh
incorporate several correlated decay curves into the analysis, and to‘
refine curve fitting techniques to reduce errors due to cascades, blends,

backgrounds, and statistical fluctuations.

Cascading in Single Exponential Decay Curves

ften in lifetime studies a decay curve is observed to contain only
a single dominant exponentia;. One usually concludes from this that the
level is virtually cascade free, and that this exponential lifetime
corresponds to the level under study. Curiously, even such a seemingly
obvious conclusion is not rigidly valid. This can be clearly
demonstrated by an example. Consider a decay chain O« l+ 2« 3, with
the populations, lifetimes, and branching ratios of level i denoted by
Ni(t), 2}, and bij' If, by some chance, the relative initial populations

were such that

1‘13(0)b32/N2(0) = (’t‘é-'té)/?j? (1)

]

then the coefficient of the Té term in the decay curve of Nz(t) becomes
identically zero, and levels 2 and 3 both decay with a single exponential,
An example of such a case is shown in Fig. 1. If, by some further

chance,

Hy(0)bogby /M (0) = (T=T) (T )/(TT) (2)
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then all three levels decay with T}, hence
Na(£)/N5(0) = N,(£)/H,(0) = N, (£)/n, (0) = exp(-t/T3) R (3)

and it becomes impossible to observe any manifestation of T, T&, or even
the presence of cascading,in any decay curve., Such conditions are quite
achievable, and many examples could be contrived (e.g., equal populations,
unbranched decays, and 2&; (P Ty = 2:3:6, ete.). Clearly a single
exponential decay curve does not, therefore, preclude cascades, nor
unambiguously determine lifetimes.
| Fortuitous initial populations can similarly cause the exponential
term containing the primary lifetime to be absent from multi-exponential
decay curves. Fig. 2 shows a cascade scheme in which the primary decay
curve contains only the exponentials present in its direct cascade.
Notice that, although the primary lifetime is not exhibited explicitly
as an exponential, it is nonetheless_manifested implicitly through the
dissimilarity of cascade and primary admixtures, if both decay curves
are measured. In this simple two exponential case, the primary lifetime
can be extracted by a simple formula as shown. We shall discuss more
powerful techniques which we have developed to extract the lifetimes
in more general cases. . ’
Since thess casual dissappearances of exponential terms can occur
only for prescribed values for relative initial populations, one might
vary the beam energy in the hope of altering initial population ratios
to test for such an effect. However, recent excitation studies seem to
indicate that, at beam-foil energies, excitation functions of levels
within the same ionic charge state are relatively similar, and relative

populations vary rather slowly with energy.

Identification of Exponential Contributions to ' Decay Curves

Even in situations in which the decay curve of a level contains
an exponential of its own meanlife, this meanlife cannot be unambig-
uously selected from among the cascade.lifetimes. Only if one-can exclude
both, indirect cascading (cascades into the cascades) and growing-in
exponentials (exponential terms of negative coefficient) does it become
certain that the primary lifetime corresponds to the shortest (unblended)
contributing meanlife. Most analyses to date neglect the possibility
of indirect cascading, in which case the only ambiguity arises from a

growing-in, which may correspond either to a fast primary level of
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low initial population, or to a cascade which is faster than the prlmary.
However, if one includes the almost certain possibility of 1nd1rect
cascading, the primary is not necessarily the fastest lifetime, irregard-
less of the presence or absence of growings-in, Fig. 3 shows an example
of an indirect cascade scheme in which the priméry level is of inter-
mediate lifetime, but exhibits no growing-in. Thus the practice of
setting the fastest fitted exponential of positive coefficient as an upper

bound to the level lifetime is not rigorously valid.

Quantitative Cascade Contributions: The Replenishment Ratio

Even if it is possible to identify the primary lifetime from among
the cascades, and to remove all backgrounds and, blends, the presence of
cascading may still introduce systematic errors. It was therefore
suggested at Lysekil that authors quote the cascading present whenever
measured lifetimes are reported. However, varioys widely divergent B
quantities have been used to quantify cascading, involving ratios of
exponential coefficients, radiated intensities, level populations, or
excitation cross sections. A properly chosen parameter shoﬁld account
for the relative lifetimes and strengths of the cascade and primary
contributions, and the number of cascades contributing. We have
suggested2 a new quantity which derives its meaning in the context of

the population equation
= = - = 1 -
dN, /at = T2 N (t)A;, - No(t)/1y (birth rate)-(death pate) . (k)
States are "born" by cascading and "die" by radiative decay. The populatlon

dynamics are well specified by the birth/death ratio, which we have

defined as the replenishment ratio R(t).

R(t) = T, T2 N (£)A, /N, (1) (5)

- Thus R<<l implies little cascading, R£1l implies heavy cascading, and
R>1 implies strong growing in. We have denoted as t=0 the earliest

point on the decay curve which is unobstructed by the foil, and quoted
R(0) for each of our recent lifetime measurements. For a curve fit to

exponential lifetimes Tﬂ and coefficients C., R(0) is given by

R(0) = ~ (1-1"/‘(‘)0 /‘ C. (6)

i=2 J
For an intensity calibrated measurement, R(0) is given by the ratio of

summed input intensities to summed output intensities, so it is also a

useful quantity when cascades are measured directly.
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Stat. Pop. FIGURE 1. Example of a cascaded level with a single
exponential decay curve. The lifetime of level 2 does

s(1) p(3) a(s) not occur in the decay curve of either level 3 or 2.

Nz(t) = FN (0)+ 3(0)T]exp(-t/'2‘2) +[ (O)Tjexp(-t/'té)

2
L g 3" 2'2-j

S L)) ey e/3) + [—g-l(—ll’exp( -4/6)

3
'“—“'\,_.__-__a R ——
0 3 '
Populations FIGURE 2. Example of a multiply cascaded level with'acdecay
(5) (6) curve which does not involve its own lifetime. The lifetime
) of level 1 does not occur explicitly in any decay curve, but
£§=5 can be extracted from comparison of the admixtures.
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Populations " FIGURE 3. Example of & decay curve in which a cascade
(5) (0) (1) is the fastest contributing lifetime, but exhibits no .

growing in.
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Integrated Decay Curve Cascade Analysis

Many of the problems discussed earlier can be eliminated if the
decay curves of the contributing cascades can also be measured, and
incorporated into the analysis. Since few beam-foil laboratories
possess an intensity calibrated detection system over a wide wavélength
range, one usually measures arbitrarily normelized decay curves (ANDC)
and care must be exercised in combining them. However, since they
contain no normalization information, the decay. curves can be measured
in any convenient branch.

We have deduced a novel analysis technique3 by noting that the
ANDC of a level k, denoted by Ik(t), is proportional to its instantaneous

level population
I, (t) = N (t) (7)

with a proportionality constant which depends upon the detection efficiency,
the meanlife, and the brénching ratio.. If the ANDC of Eq(7) are substituted
into Eq(L4), and the constants factored together and denoted by a set of

undetermined multipliers Ei’ the equation can be written
=52 :
ta1;/as = 32 §1,(¢) - Io(¢) : - (8)

The undetermined multipliers can be related to the replenishment ratio,

since clearly ‘
R(0) = f__-é_gixi(o)/xl(o) ‘ . (9)

If the ANDC are all measured, Eq(7) provides a linear relationship
between fi and the gi for each instant of time, and thus 'permits their
determination. For ease of solution, we integrate both sides of Eq(8) .
between arbitrary limits.tI and tF’ which can be varied to provide a
sufficient number of independent relationships. A schematic representation -
of the technique applied to a singly cascaded level is shown in Fig. L.
Such a simple two parameter system of equations can be solved graphica}ly,
and examples are shown in Figs. 5a and 5b. The sharpness of the inter-
section point verifies that the most important cascade has been correctly
jdentified. A diffuse intersection would imply that other important
cascades have been neglected, and non-intersecting lines would indicate

that the cascade used is either unimportant or misidentified.
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FIGURE 4, Schematic representation. of
the integrated decay curve cascade
analysis of a singly cascaded level,
The lifetime 77 and the relative
normalization ~ § of the two curves
are¢ linearly related through deter=-
minable parameters as shown.

LN

&>

FIGURE 5. Graphical solution of the
linear relationships generated as
shown in Fig. 4. The integration
limits are indicated for each line,
and their intersection determines
their simultaneous solution.
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This méthod can be applied to multiply cascaded levels through
inversion of the resulting coupled linear equations. However, we have
found that many doubly cascaded levels can also be handled graphically
if each cascade dominates in a limited portion of the decay curve.

Fig. 6 shows schematically a situation in which a fast cascade dbminates\
the early repopulation, then becomes depleted and a slower, initially
weaker cascade becomes dominant. Separate single cascade analyses can

be performed in the early and late regions, and. compared for consistency.

Deconvoluting Unresolved Blends

A slight variation of this method can be used to deconvolute
unresolved blends in cascade decay curves, if the blending admixture
cen somehow be varied (e.g., by measuring at two different positions
across the line profile, or in two different gfating orders, or by
measuring two different branches of the same level, etec.). If two
different (arbitrarily normalized) admixtures of a desired and an
undesired decay curve are subtracted with undetermined multipliers,
there exist values of the multipliers for which the undesired contri-
bution vanishes, and the desired contributdion becomes correctly
normalized. If the desired decay curve is the dominant repopulator
for another measured level, the appropriate multipliers can bé deter-
mined by the cascade analysis described above. An example of the
application of this technique to & line masked by another line adjacent
to it is shown in Fig. 7. Another example involving three degenerate
lines, one measurable in another branch, is shown in Fig. 8. ’

Differentiation and Integration of Decay Curves

The early and late portions of a decay curve are usually quite

- different in information content. The early portions contain short-

lived exponentials and have high statistical accuracy, while the late
portions contain long-lived exponentials and have low statistical accuracy.

If the decay curve is of the form

I, (t) =12=11 C, exp(-t/t}) (10)
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FIGURE 6,

Lerly-lele cescede analycis

FIGURE T .

Measured decay curves
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then the derivative is
[
= = -
dI /at = 3 (C;/;exp(-t/T;) (11)

and the integral is

[ -
1 'y =
Jy T (1) =5

(Cité)exp(—t/T;) (12)
Thus, if the early portion of the decay curve possesses sufficient statistical
accuracy to permit reliable numerical differentiation (perhaps successively
several times) , the resulting curve will proportionately reduce the
contributions of longer lifetimes, and eliminate completely the necessity
of a background subtraction.?.Also, numerical integration of the late
portion of the decay curve will proportionately increase the relative
contribution of the longer lifetimes, and the integration process should
smooth out statistical fluctuations6. Thus curve fits for the integrated
and differentiated decay curves are often simpler and more reliable than
those for the original decay curve. An example of our application of this

technique is- shown in Fig.9.

Meanlives from Logarithmic Derivatives and Replenishment Ratios

From the definition of the replenishment ratio in Eq(5), Eg(k) can

be rewritten ‘

aN, /at = Ea(t)-l_]Nl(t)/'rl ‘ (13)
hence we can write the meanlife as

T, = [-r(s)] /[-a(unn)/at] . (1%)

For decay curves of sufficient statistical accuracy, numerically computed
logarithmic derivatives near t=0 can provide an upper limif to the mean-
1ife! if one assumes the primary level is the fastest contributor. Further,
in many cases the value of R{t) obtained from a curve fit is only weakly
sensitive to the value of ?1 obtained in the fit, and can be corrected

in an iterative fashion, using Eq(7). Thus even though both the logarithmic
derivative and the replenishment ratio vary greatly as a function of
distance from the foil, their use in Eq(1llk) may provide reliable lifetimes.
Table I illustrates a measurement of a lifetime too short to be extracted

by standard curve fits.
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FIGURE 9. Curve fits to
the measured decay curve
and its numerical integral
and, derivative for the

INTEGRAL
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ks “P level in P I. All I
fits contain the same 5
exponential lifetimes, .
but the admixtures vary ] o
in proportion to the . \
relative lifetimes. ) 1
A PT 1780 A
I\
1% %, DECAY CURVE
, I
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-
; dt
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Table I. Determination of the meanlife of the 3s3p lP term in P IV
from values of the logarithmic derivative and the replenish~

ment ratio at various distances from the foil.

x R(t) -d(lnIl)/dt gef
0,125 =n 0.272 3.58 ng=t 0,217 ns
0.375 0.400 3.73 0.219
0.025 0.603 1.32 0.221
6.875 0.7€0 , 0.94 0.255
1.125 0.£20 0.59 e 0.264
1,375 0,600 0.52 0.192
1.625 0.905 0.39 0.230
1.875 0.913 0.38 0.242

2.125 0.920 0.30 0,265
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Decay of Polarization

It has been observed that radiation emitted after beam-foil
excitation may exhibit appreciable pblarization, which implies that
magnetic substates are not equally populated by the source. It can
be shown8 that states differing only in magnetic quantum number must .
have the same lifetime, so the interpretation of level lifetimes does
not require "natural excitation". However, decay curves I;(t) aﬁd
Ii(t), viewed through polarizing filters oriented parallel and
perpendicular to the beam axis, may contain different admixtures of
primary and cascade exponentials. Therefore, Gordon Berry, Jean-Louis
Subtil, and I have considered the use of polarization measurements to

extract lifetimes from cascaded decay curves.

A fTield-free,selectively excited sample should have the
polarization of its radiation washed out by two processes: decay,
wvhich should depopulate magnetic substates non-selectively but in
proportion to their instantaneous sub-populations; and cascades,
which should repopulate in some manner dependent upon higher level
sub-populations and selection rules, but independent of primary level
sub-populations. Thus, if we could assume either that the cascade
levels are uniformly sub-populated, or that there is no coherence
between the ¢ and 1 transitions in the cascades andthose in the
primary decays, then the cascades should affect both polarization
decay curves in exactly the same way. If we then subtract the two
(relatively normal%zed) polarization decay curves, the cascade
contributions, if present, would cancel. Thus the difference between
polarizatioﬁ decay curves would be washed out only through decay
depopulation, and, unless there are fine structure complicationsg,

would decay as a single exponential of the primary lifetime. Thus

. .
I;(t)/E“- Ii(t)/E* S exp(;t/ﬁa) + (cascggg/éz;cellations) (15)

The instrumental polarizations, E“and E*can be determined either by
observing an unpolarized S-state, or by comparing the unpolarized
background levels on the tails of the decay curves. In preliminary
studies we have measured transitions with polarization decay curves
which differ by 25% and which, although heavily cascaded, yield a single

exponential decay curve upon subtraction.
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