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Abstract. Explicit approximate expressions are developed that accurately represent the
self-energy radiative corrections of an electron in a hydrogen-like atom as a function of
effective nuclear charge Z. Known perturbation expansions valid for low Z are compared
with existing numerical calculations for the 1s, 2s and 2p shifts, and the differences are
parameterised to extend their validity to include the Z values of all stable elements. These
expansions are applied to make extrapolative predictions for principal quantum numbers
n<4. The results have applications in the semi-empirical study of Rydberg states in
complex atoms.

Explicit formal representations of the self-energy radiative corrections in single-electron
atoms have applications in the semi-empirical study of Rydberg states in complex
atoms. High-resolution spectroscopic analyses must often rely upon isoelectronic
extrapolations utilising semi-empirical screening parameter linearisations (such as the
regular and irregular doublet laws) to obtain the requisite precision (cf Edlén 1964,
Curtis 1985). Long before the development of quantum electrodynamics, correction
procedures were empirically formulated in the isoelectronic screening parametrisation
of x-ray spectra (Green 1923) that can now be recognised (Curtis 1977) as accounting
for self-energy radiative corrections. It has been shown (Edlén 1978) that the linearities
exhibited in these systematisations can be enhanced if self-energy radiative corrections
are approximately included for these many-electron systems, using the corresponding
hydrogen-like estimate with an appropriately screened effective central charge Z.

Such corrections become increasingly important as new experimental techniques
permit the extension of precision spectroscopic studies to very heavy and very highly
ionised systems, where interactions sensitive to higher powers of Z grow in significance.
Although the gross energy of a highly ionised atom with many remaining electrons
may resemble a fully screened hydrogen-like Balmer system, corrections sensitive to
the inner portion of the wavefunction (such as the Breit interaction, the finite size of
the nucleus, the relativistic inseparability of the reduced mass and these self-energy
radiative corrections) approach more nearly a fully stripped highly relativistic system.
Where explicit functional expressions for their charge dependences exist, these interac-
tions can be incorporated directly into screening parameter systematisations of the
data, both to provide accurate extrapolations and to eiucidate the dynamics deep
within the charge core.

Explicit perturbation expansions for self-energy corrections in hydrogen-like
systems have been formulated (Bethe 1947, Harriman 1956, Garcia and Mack 1965,
Erickson 1977) that are valid for Z <20, and exact numerical calculations have been
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reported (Mohr 1974, 1982) for selected values of Z <110 in the n=1 and 2 shells.
To facilitate semi-empirical formulations, we have used these exact calculations to
develop explicit corrected approximation formulae that are valid over the entire range
of stable elements for the ns and np states with principal quantum number n<4.
Following the notation of Mohr (1974, 1982), we utilise the fact that the lowest-order
self-energy radiative corrections scale with the fine structure as aZ to factor out the
dominant Z and n dependences. Thus the self-energy radiative correction E,,; for a
state of orbital and total angular momentum [ and j is written as
3,4
Enl2j(z)=2R—7Tan3£Fn12j(Z)- (1)

Here R is the Rydberg energy and « is the fine-structure constant. F,,; is the reduced
splitting factor, which is less rapidly varying with Z and n than E,;;; and hence the
quantity chosen for study here.

Garcia and Mack (1965) give perturbative expansions for these shifts that are valid
for Z=<20. For ns,,, and np,,, these expansions can be expressed as

FSM(Z)=%In(1/aZ)- A, +9.6184aZ ~ (aZ)[41n*(1/ aZ)

— B, In(1/aZ)+25.442] (2)
F$M(Z)=-C,+ D,(aZ)*In(1/ aZ). 3)

Garcia and Mack (1965) give a similar expression for nps,,, but a more inclusive
perturbative expression has been given for the np,,,-np,,, fine-structure interval by
Erickson (1977), expressed as

F5a(Z) = Fap(Z)=0.2496 —57m(aZ) — E,(aZ)[2In(1/ aZ) + 33— 1.476aZ]. 4

The n-dependent coefficients can be written as

A,=%Ink,,—0.8438 (5)

B,= 8(ln(2/n) +Y 1/q —77/180n2) +0.4491 (6)
g=1

C,=3%In k,,+0.1664 (7

D,=%(3-2/n)+%E, (8)

E,=31-1/n? 9

where k,; is the mean excitation energy, which has been computed and tabulated for
n =1-4by Harriman (1956). For convenience the numerical values of these coeflicients
for n=1-—4 are given in table 1.

We have used these approximate perturbation expansions to attempt to deconvolute
from the exact values their dependences on low powers of Z. We have therefore
studied the Z variation of the differences A between the exact and perturbation values,
as defined by

Fnsl(z) = Fg;sr‘l/((z)+Ans(Z) (10)
anl(z)zFE;])vll(Z)-FAnpl(Z) (11)

and
(an3(Z) - anl(Z)) = (Ffpii(z) - Ffp](z))_'-Anfs(Z)- (12)
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Table 1. Coefficients for equations (2)-(4) computed from equations (5)-(9) and the table
of Harriman (1956).

n A, B, C, D, E,
1 3.1351 10.572 — — —

2 2.9053 11.594 0.126 39 1.1444 0.2500
3 2.8465 11.492 0.11549 1.3235 0.2963
4 2.8227 11.357 0.100 47 1.3861 03125

Ab initio numerical computations of Fy,,, F,,, Fyp;, and Fp; for specific values of
Z (10-110 in intervals of 10) have been reported by Mohr (1974, 1982). This permits
parametrisation studies of the Z dependences of A, Ay, Ay, and Ay,

Figure 1 displays both A, and A, plotted as a function of (aZ)>. This exposition
is interesting in two respects: it reveals that A, is a linear function of this abscissa,
and that it possesses only a very weak dependence on princinal quantum number.
Least-squares fits to a straight line yield an intercept and slops of 0.2164 and 22.49
for 1s and 0.1820 and 23.44 for 2s. On this basis we shall assur.ie that the corresponding
quantitites for the n =3 and 4 levels differ negligibly from those of the n =2, and use
A, to extrapolate the 3s and 4s shifts.
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Figure 1. Plot of the differences between the calculations of Mohr (1974, 1982) and the
formulae of Garcia and Mack (1965) against (aZ)? for the reduced splitting of the 1s (O)
and 2s (X) levels. The broken lines represent least-squares fits to straight lines on this plot.

Figure 2 shows A,,, plotted as a function of («Z)”. In this case A, is seen to be
well represented by a parabolic function of the abscissa, as indicated by the least-squares
fit. Although no calculations for other np,,, shifts are available, we shall also assume
that this quantity has a negligible dependence on n, and use A, to extrapolate the
shifts of the 3p,,, and 4p,,,.

Figure 3 presents A, plotted as a function of (aZ)*. Here A, is very accurately
represented by a linear function of the abscissa, and the intercept (indicated by a
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Figure 2. Plot of the difference between the calculations of Mohr (1982) and the formula
of Garcia and Mack (1965) against (aZ)? for the reduced shift of the 2py,; level. The
broken curve represents a least-squares fit to a parabola on this plot.
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Figure 3. Plot of the difference between the calculations of Mohr (1982) and the formula
of Erickson (1977) against (@Z)* for the reduced shift of the fine structure of the 2p term.
The broken line represents a least-squares fit to a straight line on this plot.

least-squares fit) is very close to the origin of the coordinate system. Thus this correction
reduces essentially to a simple one-term power law. Again here we shall assume
negligible n dependence in this correction.

From these figures it can be seen that the differences between the exact and
perturbation values are dominanted by only one or two powers in an aZ expansion.
It is interesting to note that for A,, and A, the correction corresponds to a power of
aZ one unit higher than was already included in equations (2) and (4), indicating that
these expressions are correct (to within a small additive constant) to within the order
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of aZ to which they were expanded. In the case of A,,;, occurrence of a correction
proportional to (aZ)? indicates that equation (3) requires additional inclusions within
the order to which it was expanded. These results suggest that a relatively modest
refinement and extension of the ab initio perturbation expansion might identify the
origin of these corrections.

Assuming the results of these least-squares fits can be extrapolated to higher n, we
obtain the following explicit corrections:

A(Z)=0.2164+22.49(aZ)® (13)
and for n>1

A (Z)=0.1820+23.44(aZ)? (14)

A,pi(Z)=—0.0057—0.3634(aZ)*+2.018(aZ)* (15)

A, (Z) =0.0068 - 2.593(aZ)*. (16)

Thus the substitution of equations (2)-(4) (using table 1) and (13)-(16) in equations
(10)-(12) provides an explicit functional representation for F,,;. A comparison of
results using the approximation formula and the exact computations of Mohr (1974,
1982) is given for the 1s and 2s states in table 2. Agreement is generally to within 1%.
Assuming the n independence of A, for n =2, extrapolative predictions for 3s and 4s
are also presented in table 2. Similarly, approximate and exact results for 2p,,, and
2ps,; are compared in table 3. Agreement for the 2p;,, (and the fine-structure difference)
is also to within about 1%. The percentage error in 2p,,, is slightly larger in the region
where it passes through zero, but the absolute agreement is quite good. Assuming
negligible n dependence in the correction functions A,, and A,g, extrapolative
predictions for 3pi,,, 3ps,2, 4p1/2 and 4p,,, are also presented in table 3.

The explicit formulae presented here provide a useful means for modelling the
core charge scaling of the self-energy radiative corrections in Rydberg states of complex
many-electron atoms. They also provide predictions of these corrections for n =3 and
4 states for truly one-electron atoms over all Z, for which no other estimates presently
exist. The apparent n independence and the simple power law Z dependence of the
corrections to these perturbative expansions raise interesting theoretical questions and
motivate the formal calculation of further terms in those expansions.

Table 2. Calculated (Mohr 1974, 1982) and fitted reduced shifts for the 1s and 2s levels
and extrapolated fitted shifts for the 3s and 4s levels.

Flsl FZsl F3sl F4sl
zZ Mohr Fit Mohr Fit Fit Fit
10 4.654 4.64 4.893 485 491 493
20 3.246 3.26 3.506 3.50 3.56 3.58
30 2.552 2.58 2.839 2.86 291 2.93
40 2.135 2.16 2.455 2.48 2.53 2.54
50 1.864 1.86 2.224 2.24 2.29 2.29
60 1.684 1.66 2.095 2.09 2.14 2.14
70 1.568 1.53 2.044 2.03 2.07 2.07
80 1.503 1.48 2.065 2.05 2.09 2.09

90 1.488 1.53 2.169 2.18 2.22 222
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Table 3. Calculated (Mohr 1974, 1982) and fitted reduced shifts for the 2p,,, and 2p;,,
levels and extrapolated fitted shifts for the 3p,,,, 3ps/2, 4Py/2 and 4p;,; levels.

FZpl F2p3 F‘Bpl F3p3 F4p1 F4p3

z Mohr Fit Mohr Fit Fit Fit Fit Fit

10 —0.1145 —0.1180  0.1303 0.1312 —0.1046  0.1433 —0.0987  0.1488
20 -0.0922 —0.0920  0.1436 0.1443 —0.0738  0.1593 —0.0662  0.1658
30 —0.0641 -0.0616  0.1604 0.1604 —0.0376  0.1802 -0.0280  0.1884
40 -0.0308 —0.0283 0.1794 0.1789 0.0013 0.2056 0.0129  0.2162
50 0.0082 0.0089  0.1999 0.1992 0.0438  0.2356 0.0573  0.2496
60 0.0549 0.0536  0.2215 0.2210 0.0928  0.2706 0.1078  0.2891
70 0.1129 0.1111 0.2440 0.2440 0.1534  0.3106 0.1694  0.3352
80 0.1884 0.1884  0.2671 0.2675 0.2321 0.3558 0.2486  0.3880
90 0.2934 0.2942  0.2906 0.2906 0.3375 0.4060 0.3539  0.4477
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