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The transition probability of a cascade-repopulated level can be determined from decay curves of all
transitions into and out of that level. This analysis is extended to situations in which a contributing cascade
is unmeasured, yielding both the transition probability sought and the mean life of the missing transition.
This method is applied to the measurement of the mean lives of the 2p, and 2s; levels of Ne 1.

InpEX HEADINGS: Neon; Spectra.

Atomic-lifetime measurements are often hampered by
the difficulties introduced by cascading transitions that
repopulate the upper energy level of the transition of
interest.’ It can easily be shown® that each cascade
transition (either direct or indirect) adds one exponen-
tial term to the expression for the time dependence of
the light emitted by the transition of interest. The
corrections to the apparent mean life of this level in-
troduced by these terms are commonly as large as an
order of magnitude.® Although it is theoretically
possible to eliminate cascade transitions by excitation
of the level of interest near threshold energy,” experi-
mental limitations often preclude this possibility.*8
Recently, a new method for obtaining transition
probabilities from decay curves was presented® that
incorporates the decay curves (irradiance vs time) of
the cascade transitions into the analysis of the decay
curve of the transition of interest. Although this new
analysis technique accounts exactly for cascade effects,
its application was limited to cases in which the decay
curves of all of the significantly intense transitions into
the level being investigated can be measured. Sub-
sequent use of this analysis technique has brought to
light certain modifications in its application that
account for the effects of cascades on the measurement
of the transition probability of a given level even when
one contributing cascade transition is not observed
experimentally. Moreover, when this is done, the decay
‘curve of the unobserved transition can be indirectly
measured. It is thus possible to measure the lifetime of
the cascading level, even though no radiation from this
level is detected. This aspect of the method makes it
possible to measure decay curves with radiation outside
the range of existing detectors and might lead to
measurements of decay curves due to radiationless re-
population mechanisms. The purpose of this paper is to
describe this extension of the new technique, and to
illustrate its use by successfully applying it to measure
the mean life of the 2p, level of Ne1 (Paschen notation).
Perhaps the most important aspect of the reported
research is that the successful application of the exten-
sion of the cascade analysis encourages applications of
the original analysis, particularly to vacuum-ultraviolet
transitions of highly ionized species for which all of the
necessary radiation is experimentally measurable.

METHOD

Let Ans denote the transition probability that is to
be measured. Here NV represents the level from which
the decay originated and J denotes the final state. If the
higher-lying levels that can cascade into the state V are
denoted by the index &, and the lower-lying states into
which V can decay are denoted by j, it has been shown?
(in slightly different form) that
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where I,.,() represents the irradiance (in photons/s)
emitted in the transition m—= at time ¢, and {=0 and
t=T are two arbitrarily chosen observation times. If
the decay curves of all transitions into and out of state
N are measurable, then every quantity in Eq. (1)
except Axs can be experimentally determined, and a
value for this transition probability is obtained. If,
however, one of the cascade transitions, denoted by K,
cannot be measured, a new procedure can be adopted.
Equation (1) can be applied successively for two closely
separated values of the observation time T and TH+AT
to obtain
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Every quantity occurring on the right-hand side of
Eq. (2) is measurable except for the transition proba-
bility Axy. Moreover, for sufficiently small AT, the
integral on the left-hand side of the equation is approxi-
mately Ixn(T+AT/2)-AT. Thus, if Ays is known,
Eq. (2) allows the construction of the decay curve of
the missing transition. In the case of a single exponential
decay, the mean life 7x and the decay constant
ax=1/7x can be determined using the standard least-
squares curve-fitting method. Alternatively, if Axs is
not known, Eq. (2) can often still be utilized to deter-
mine both Ay and ex provided that certain assump-
tions can justifiably be made about the missing cascade
transition. In particular, we might assume that the
repopulation of the upper level of the unmeasured
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transition is negligibly small, resulting in a single
exponential decay. This would be the case whenever
the line-excitation function (i.e., the product of the
transition probability and the excitation cross section)
of the unmeasured transition is large compared with the
line-excitation functions of the transitions that re-
populate it. The necessary information concerning the
unmeasured transition can be extracted from theoretical
or measured estimates of line-excitation functions, and
often can be directly determined by measuring the decay
curve of a transition out of the same upper level as the
undetected transition. In the latter case, the decay
constant ag can be independently determined so that a
normalization factor would be the only remaining
obstacle to determining the transition probability A ns
using Eq. (2).

For the case in which the unmeasured cascade
transition is so strongly excited, the following procedure
for determining both Ax; and ak is employed:

(a) All of the decay curves of the transitions involved
in the right-hand side of Eq. (2) are measured.

(b) An estimated trial value is assumed for 4 x..

(c) The decay curve corresponding to the unobserved
transition is constructed by successive applications
of Eq. (2).

(d) The process is repeated, varying the trial value
of Any and determining corresponding decay curves of
the unmeasured transition in an effort to search for the
value of Ay, that yields the constructed decay curve
that best fits a single exponential decay in the least-
squares sense.

A number of obvious variations of this procedure also
exists, including application to the case of several missing
cascade transitions of similar and long lifetimes and the
case of a missing transition with a more complex
decay curve. ,

When all transitions are measured, it has been shown
that Eq. (1) can be used directly to determine a unique
value for the transition probability 4x,. This cascade
analysis requires only the measurement of transitions
directly populating the primary level of interest N,
but it properly corrects for every contribution to the
population of level NV whether it be by direct cascades
or from an atom that has undergone a series of cascading
transitions with widely varying decay constants. This
determination of 4y requires only the experimentally
measured decay curves, and no parametrization of the
curves, such as a lifetime, is necessary. In addition, it is
unnecessary to resolve spectrally all of the cascading
transitions because the individual contributions are
simply summed in Eq. (1). The extension of this cascade
analysis to measurements involving undetectable tran-
sitions maintains the corrections and requirements of
the more direct method except for corrections due to
cascade transitions into the upper level of the un-
measured transition that are assumed to be negligible
for the reasons described.
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A consistency check on the extension of the cascade
analysis is possible if we neglect all second-order
cascading transitions (i.e., transitions only indirectly
populating the primary level of interest). To this
approximation, we can reconstruct the decay curve of
the primary transition by using the theoretical expres-
sion for its decay curve given by?
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and the measured decay curves. The decay constant of
level V denoted as ay=3_; Awn; can be determined by
a relative intensity measurement and 4y because the
ratio of the intensities of any two transitions out of a
common upper level is proportional to the ratio of their
transition probabilities. The reconstructed curve and
the directly measured curve should be nearly equal,
provided that the assumption of negligible second-order
cascading is justified. In practice, many of the decay
curves of the cascades can be least-squares fitted to
either a single exponential term, indicating negligible
higher-order cascading, or to a relatively short-lived
and a relatively long-lived exponential, interpretable
as an indication of long-lived higher-order cascades. In
either of these cases, higher-order cascading has a small
contribution at times immediately following excitation,
so that the agreement of the reconstructed and directly
measured curves should be reasonably good for the
earlier section of the decay, with poorer agreement in
the tail. '

EXPERIMENT

In the reported research, a pulsed electron beam is
employed to populate the excited states of the atoms of
a low-pressure gas. The photons emitted by the excited
atoms are spectrally selected by a grating monochroma-
tor and are detected by an ITT 4034 fast-rise low-noise
multiplier phototube operated as a single-photon
counter. The timing arrangement employed here is
similar to the delayed-coincidence method originally
used for the measurement of excited atomic-state
lifetimes by Heron ef ¢l.,'° and later developed by
Bennett.” This technique has since been used by
numerous workers and will be only briefly described
here. In the present arrangement, the time-to-amplitude
converter (TAC) is started by the “sync” output of the
square-pulse generator .used to provide the pulsed
electron beam and the single-photon signals are used to
stop the converter. The shut-off time of the beam pulses
is less than 1.5 ns and the excitation is cycled at 50 kHz
so that only a relatively short amount of time is required
to collect a large statistical sample of TAC output
pulses, which are stored according to pulse height in a
multichannel pulse-height analyzer. In this way, the
number of photons emitted from each wavelength-



1658

selected atomic transition of interest, as a function of
the time at which they are emitted, is obtained from a
large number of statistically distributed delayed-
coincidence events. The analysis of these intensity-
decay curves is the basis of the present research.

Because the relative magnitudes of the decay curves
from several spectral lines must be compared and be-
cause they cannot be determined simultaneously with
the present arrangement, it has been necessary to
provide a method for normalizing the data-collection
times. Variations of atomic-number density and electron
flux might otherwise make relative-intensity determina-
tions impossible. For this purpose, a separate optical
system is used to monitor the photon counts from a
suitable spectral line of the atomic species of interest.
The total number of monitor counts for each run serves
as the normalization factor. The wavelength dependence
of the quantum efficiencies of the combined mono-
chromator and detector system must also be deter-
mined. This calibration, which has been fully described
elsewhere,! utilizes an Eppley Laboratory standard of
spectral irradiance in conjunction with a set of accu-
rately calibrated neutral density filters to reduce the
light levels to the single-photon range and high-speed
(100 mHz) counting electronics. Research-grade neon
gas entered a differentially pumped gas target located
in a Faraday cage. Decay curves were measured as
described. Typical operating pressure in the target was
10~* torr although no apparent change of the shape of
the 6402-A decay curve was observed for pressure as
high as 7103 torr.

APPLICATION

The pulsed electron beam was used to excite neon
atoms, and the mean life of the 2p, level of Ne1 was
investigated. Because the method being tested is not
restricted by cascading, the energy of the beam was
chosen to be high above threshold excitation, so that
many levels were excited. In the notation of the previous
section, NV denoted the 2p, level, which can decay only
to the 1ss5 level, previously denoted as J. The decay
curve for the transition J-N at 6402 A was obtained,
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Fic. 1. x2 vs trial value of 1/4(2ps,1s5) for fitting constructed
decay curve of undetected transition to a single exponential decay
curve. The abscissa has 0.529 ns per channel, and the observed
standard deviation ¢ is 0.9 ns.
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Fic. 2. Decay curve of the unobserved transition 11 180 A&,
constructed by use of the new analysis technique. The best
fit to a single exponential decay was obtained for A (2p,,1s5)
=(21.4409 ns)™?! and «(2s5)=(239.4£11 ns) L. The abscissa
has 0.529 ns per channel.

as were decay curves for cascade transitions at 11
narrow wavelength bands between 4712 and 8377 A.
Several of these decay curves may be due to unresolved
blends of transitions into the 2p, level, but it has been
shown that this is permissible for the present analysis.
Cascade decay curves within the sensitive range of the
detector, but too weak to be observed, can easily be
shown to make a negligible contribution to the popula-
tion of the 2p, level,! and consequently they were
neglected. One important cascade transition, that from
the 2s5 level (denoted by K in the previous section),
occurs at 11 180 A. This is far beyond the infrared limit
of the detector employed; hence it was not observed.
However, the decay curve of this unmeasured transition
is expected to be a single exponential decay, because the
line-excitation cross sections for transitions into the 2s;
level are considerably smaller than the line-excitation
cross section for the 2py—2s; transition.>!3 A very
recent direct measurement of the 2p,—2s; transition
decay curve using a cooled photomultiplier tube with
an S-1 photocathode sensitivity has subsequently
confirmed the single-exponential appearance of the 2s;
level of Ne1.* Thus, with this single undetected
transition, the method described above can be utilized
to determine both A(2ps,1s;5) and a(2s;). The results of
applying the method of the first section to the data ob-
tained are summarized in Figs. 1 and 2. The former
shows the value of chi square for fitting the constructed
2py-2s5 decay curve to a single exponential term, as a
function of the assumed value of 4ys. A sensitive varia-
tion is observed, and the best fit to the experimental
data is given by the value A4 (2ps,1s55) =(21.440.9 ns)~*.
The second figure shows the reconstructed decay curve
for the single unobserved transition 2ps—2s; computed
by use of Eq. (2) with the above value of 4(2ps,1s;).
The decay curve appears to be a single exponential,
which indicates that higher-order cascading is small,
and yields a very accurate determination of the lifetime
of the 2s; level even though no radiation from the
2py—2s5 transition was detected. The value of a(2s;5) is
relatively insensitive to the choice of 4(2pe,1s5) and is
(23911 ns)~. This agrees well with the measurements
of Chojnacki referred to above.'*
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The contribution of each term in Eq. (3) to the ob-
served decay of the 2py level, Ix,(f), has been deter-
mined by fitting all 11 measured cascade decay curves
and the reconstructed 11 180-A decay curve to one or
two exponentials yielding an initial intensity and life-
time for each cascade. The individual contributions of
each cascade transition are shown in Fig. 3 as well as a
comparison of the experimental data with the composite
curve so derived. The decay curve predicted from
Eq. (3) agrees well with the experimental data at the
beginning of the decay with poorer agreement in the tail,
as would be expected from combinations or indirect
cascades into the 2p¢ level.

The fitting of decay curves to sums of exponential
terms is a commonly used technique for approximating
the effects of cascading transitions on atomic-lifetime
measurements. If the cascades have lifetimes that are
reasonably different from the transition of interest, then
the cascade contributions can be included as a single
effective exponential and a two-exponential fit can be
made. A simple two-exponential, four-parameter, fit to
the 6402-A decay curve has been made for comparison
purposes and this yielded a very satisfactory fit with a
value for the short-lived component of 26.2+40.6 ns and
23049 ns for the longer-lived term. It can be seen from
Fig. 3 that the rather large overestimate of the 2p,
lifetime that would have resulted from following this
curve-fitting procedure is principally due to a blending
of the 8377- and 6402-A terms. This example demon-
strates clearly the importance of including the measured
decay curve of the cascade transitions in the data
analysis of the decay curve of the transition of interest.

CONCLUSIONS

We have obtained values for the mean life of the 2p,
level of Ner using a data-analysis technique that ex-
plicitly accounts for effects of cascade transitions. The
resulting value of 21.44-0.9 ns is in good agreement
with the results of Klose!® (22.54-0.9 ns) and is also in
reasonable agreement with the threshold measurement
of Bennett and Kindlmann? (19.54-0.6 ns). We have
also indirectly measured the mean life of the 2s; level
and this result (239211 ns) is expected to be more
reliable than the earlier measurement of Bennett,®
which was subject to effects of collisional de-excitation.
The indirectly measured value is in excellent agreement
with Chojnacki’s'* value (240 ns) obtained by use of a
more direct measurement.

The new method of analysis has allowed a measure-
ment at high excitation energies that is comparable in
accuracy to the results of the threshold measurements,
and should be equally applicable to situations unsuited
to threshold excitation. Moreover, this measurement
demonstrates an analysis technique that allows con-
struction of the decay curve of an important cascade
transition in a situation in which the radiation from the
transition cannot be observed. This aspect of the
analysis may prove useful both for the study of lifetimes
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Fic, 3. Individual contributions to the decay curve of the
6402-A transition of Ne 1. Each solid line in the figure refers to an
indicated term of Eq. (3), the open circles indicate the decay
curve predicted from Eq. (3), and the filled circles make up the
directly measured 6402-A decay curve. The abscissa has 0.529 ns
per channel.

involving radiation outside the range of available
detectors and for the possible study of radiationless de-
excitation mechanisms. Furthermore, it offers consider-
able promise for lifetime measurements of highly ionized
atoms for which cascade corrections often cause
considerable difhculty.
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