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Abstract. A semiclassical formulation for the term energy of a many-electron atom is
presented which includes gross structure, fine structure, core polarisation and core penetra-
tion effects. A very simple model combining perturbed Keplerian orbits with the Bohr—
Sommerfeld-Wilson quantisation hypothesis yields an explicit formula which, in appro-
priate limits, reduces to the familiar core polarisability and quantum defect parametrisa-
tions. The formula also provides a new parametrisation in terms of an effective core charge
within an effective core radius, which has been applied to predict higher term values in the
3sng states of Si 111

1. Introduction

Spectroscopic determination of atomic energy levels in many-electron atoms is often
aided by the use of empirical pafametrisations based on simple semiclassical one-
electron models. The high precision of optical spectroscopic measurements exceeds
present capabilities for ab initio many-electron calculations, and empirical inter-
polations and extrapolations of measured data among similar atomic systems can
sometimes provide more accurate predictions. A common approach is to describe the
active electron in a complex atom in terms of a quasi-hydrogen-like model with some
parametrised perturbation to account for the presence of the passive electrons. By
transforming measured wavelength data into values for these empirical parameters,
regularities among similar systems are sometimes revealed. A familiar example of this
approach is found in the Rydberg-Ritz many-electron parametrisation of the hydro-
genic Balmer formula. Obviously such models cannot adequately include effects such
as configuration interaction and exchange, but the importance of such effects in a
particular application is clearly shown by the degree of regularity present when a
parametrisation is attempted.

Prior to the development of modern quantum mechanics, vigorous efforts were
made to explore the origins of these empirical regularities. Attempts were made (e.g.,
Schrédinger 1921, Wentzel 1923, van Urk 1923, Born 1927) to deduce symbolic
formulae for quantum defects, core polarisation and core penetration energies, screen-
ing parameters, etc, using the old quantum theory (combining Newtonian mechanics
with the Bohr-Sommerfeld-Wilson quantisation hypothesis). However, the resultant
action integrals were mathematically complicated and provided limited insight into the
basic physical processes. In the period 1924-26 the old quantum theory was thought to
be totally inadequate to describe such things as many-electron atoms, molecules,
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electron spin, etc, and it was replaced by the completely new approaches of Heisenberg
and Schrodinger. Since modern quantum mechanics makes possible the use of
numerical brute force in the solution of complicated problems, the formal semiclassical
approach was largely abandoned, except in empirical applications such as those in
atomic spectroscopy. Recently there has been a revival of the use of formal semi-
empirical theories to supplement numerical calculations, and modern versions of the
old quantum theory have been successfully applied to problems for which it seemed to
fail in the 1920’s (e.g., Leopold et al 1980, Leopold and Percival 1980).

The purpose of this paper is twofold: firstly, to provide insight by showing how the
semi-empirical formulae can be traced back to a semiclassical model in a clear and
intuitive manner, and secondly, to provide a simple model which can be used to
parametrise empirical data to aid in the classification of spectra. This formulation
utilises simple time averages of powers of the radii of Keplerian orbits and the
Bohr-Sommerfeld—Wilson quantisation hypothesis, and includes gross structure, fine
structure, core polarisation and core penetration effects. The method leads to an
explicit formula for the term energy, provides an exposition of the physical basis of the
spectroscopic core polarisation formula and the Rydberg-Ritz quantum defect
parametrisation, and yields a new means of parametrising core penetration effects
which is useful in classifying spectral measurements.

2. Spectroscopic term energy

High precision spectroscopic term analyses of complex atoms are sometimes expedited
through the use of parametrised semiclassical one-electron models. A Coulomb
potential is often used as a zeroth approximation, with perturbations described using
hydrogenic expectation values. This approach is well suited to the description of
closed-shell core systems and also can be applied to higher excited states in open-shell
core systems. Even when the approach breaks down, e.g., due to exchange effects,
configuration interaction, etc, it can be useful in identifying the states for which these
effects are strong. The methods of calculation vary in their sophistication and primary
consideration here will be to those spectroscopic procedures which have been compre-
hensively described by Edlén (1964).

The term energy T (measured relative to the ionisation limit) of an outer active
electron orbiting a core, consisting of a nucleus and deformable cloud of inner passive
electrons with effective charge ¢ and dipole and quadrupole polarisabilities a4 and «q,
can be written as

T = Rao[{¢r ) +aao(Pr - ™Y
—a2ad((l - $)r )+ aar ™) +{agr ). 1)

Here R is the Rydberg constant, ag is the Bohr radius, « is the fine-structure constant
and [ and s are the orbital and spin angular momentum quantum numbers. The first
contribution corresponds to the total non-relativistic energy for a spherically symmetric
core, written in terms of Pt using the classical virial theorem. The second contribution
is the relativistic correction to the kinetic energy (cf Woodgate 1970, p 58). The
contribution involving r > is the spin—orbit magnetic interaction, corrected for the
Thomas precession (cf Woodgate 1970, pp 59-60). Evaluation of ! - s can be made
semiclassically by use of the vector model. (The relativistic kinetic energy correction
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and the spin-orbit magnetic interaction together comprise the fine-structure energy.)
The contributions involving r~* and r ¢ represent the energies arising from the
interaction of the active electron with dipole and quadrupole moments induced in the
core electron configurations (Edlén 1964). If equation (1) describes a ‘non-penetrating’
orbit, the quantities /, a4 and a4 are constant over the orbit and can be factored outside
of the averages. If the orbit penetrates the core, these quantities vary over the orbit
(note that for a potential of the form {(r)/r both the virial theorem and the spin-orbit
magnetic field operator introduce additional potential gradient factors involving d{/dr
which have, for simplicity, been neglected in equation (1)).

In the quantum mechanical formulation the bracketed average values in equation
(1) refer to expectation values. In the semiclassical approach used here these will
instead be interpreted to represent time averages over the classical Keplerian orbit.

3. Mean powers of weighted Keplerian radii

The integrals which occur in equation (1) are of the form

()] o
() e T

where 7 is the period of the orbit and y represents the local value of {, aq or a4 as a
function of position on the orbit. The values s = —1, ~2, —3, —4 and —6 are needed for
equation (1). For an unperturbed Coulomb potential (the perturbed orbits precess and
are not closed), an orbit of radius r and azimuthal angle ¢ about the principal focus is
described by Kepler’s three laws »

-1

1/r=(1+ecosd)/a(l—e?) (3)
r*d¢/dt=2ma*(1-¢>)"?/r 4)
r=2m(ma>/{e?)'? (5)

where a and e are the length of the semi-major axis and the eccentricity of the ellipse,
and  is written in terms of the electrostatic central force (in atomic units e’/m =
a’c*ao). Thus equation (2) can be rewritten

(pryJo bl te cos ) Mla(l—e?)IPy/ ¢
YT T dg(1+e cos 8) Ta(l-e )] /L

(6)

where q, ¢, ¢ and y have been left inside the integrals since they will vary with ¢ if core
penetration occurs. In the standard Bohr-Sommerfeld—Wilson quantisation, orbits
occur only under the conditions

=aon’/¢{ 7
1-e)"?*=k/n (8)

where n is the principal quantum number and k& is the quantum number corresponding
to angular momentum in the old quantum theory (cf White 1934). Here we shall adopt
a simple model for penetration in which the central charge has a constant value . in the
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internal region r <p and a constant value { in the external region r > p. If penetration
occurs the effective principal quantum numbers, semi-major axes and eccentricities will
differ in the internal and external regions, but the angular momentum and total energy
will be constant over the orbit. There will be an effective precession of the penetrating
orbit, since it involves the connection of orbit segments of differing a and £. Although
the motion is not periodic, long-term average values for the precessing penetrating
orbits can be computed by joining orbit segments to form a complete cycle in the
precessing frame.

3.1. Non-penetrating orbits

If the orbital electron does not penetrate the core, then the effective value for ¢ is equal
to the net core charge (nuclear charge minus the number of core electrons) over the
entire orbit and a4 and a4 are also constant over the orbit. Thus the quantities v, a, ¢
and 7 can be moved outside the integral, leaving

<r5>=aS(1—s2)S*3/2Jﬂd¢ (1+ecosg) %/ (9)

which can be performed analytically (Gradshteyn and Ryzhik 1965, formulae 3.661(3)
and 3.661(4)) to yield a general expression, valid for the average value of any power of r
for a Keplerian orbit, which is

(ry=a"(1—e>"*" 2P a2 [1/(1 -9V, (10)

Here P,(x) is the Legendre polynomial (the order g has been expressed as manifestly
positive in equation (10) through the relationship P_,(x) = P,-1(x)). Using the quan-
tisation conditions of equations (7) and (8), this becomes

(r")y=(aon®/{)' (k/n)" "' Pissaaimi 2 (n/ k) (11)
and the average values in equation (1) are given by

(r™h=(/ao)/n* (12)

(r*)y=(L/ao)’/n’k (13)

(ry=(¢/ao)’/n’k’ (14)

ry=(/a0)*3-k*/n*)[2n°k’ (15)

(r™®y=({/a0)*(35—30k>/n*+3k*/n*)/8n°k’. (16)

It is well known that these average values are very similar to the quantum mechanical
results (Bockasten 1974). They can be made to correspond exactly if appropriate
substitutions are made for the average values of powers of k. If factored as in equations
(12)-(16) (so that the numerator is an ascending even power series in k/n starting with
zeroth power), odd powers of k are replaced by

kK2 = Q1+ g+ D1/ Q1—g)12%7 . (17)

For even powers of k the replacement is more complicated, since it depends upon the
order A of the Legendre polynomial, and can be written as

K= 3 D™ Cull+ Y- i)! (18)
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where the coefficients C,,; are positive rational fractions which can be evaluated by
inspection of the quantum mechanical expressions (Bockasten 1974) and are listed for
A <6 in table 1. It has long been known (Fock 1935) that the radial equation of the
hydrogen atom possesses O(4) symmetry, and thus has group theoretical properties
similar to those of angular momentum (the principal quantum number of the radial
formulation behaves like the magnetic quantum number of angular momentum). The
results obtained above contain evidence of that symmetry, since powers of k are no
longer interpreted as successive algebraic multiplications but are instead replaced by
the substitutions of equations (17) and (18). Reduction to the semiclassical limit thus
occurs if k is interpreted as a normal algebraic multiplicative operator.

Table 1.
CAqi

A q i=0 i=1 i=2 i=3
2 1 0 1
3 1 i 1

5

6
4 2 0 0 1
5 1 3 1
5 2 2 3 1
6 1 7 1
6 @ 3 1
6 0 0 1

Several interesting insights can be gained by inspection of equation (11). For
example, it can easily be seen that (" *) is independent of k only in the two cases s =0
and s = —1. Thus (excluding the trivial case of the norm) the 1/r case is unique in the
fact that its average value is independent of k, providing an exposition of the familiar
‘accidental degeneracy’ peculiar to the Coulomb potential. Since a Legendre poly-
nomial of order g occuis in equation (11) for both s=—¢—2 and for s=q—1
(originating in the relationship P_;(x) = P;_{(x)) the two corresponding average values
have the relationship

(" =g/ aonk)** " (r" ) (19)

which, with the substitution of equation (17), yields a known quantum mechanical
identity (Pasternak 1937). This symmetry of Legendre polynomial orders about the
point s = —3 breaks equation (11) into two families of solutions with respect to the
asymptotic behaviour of (r*) along a Rydberg series. For fixed k and increasing # the
quantity n/k becomes large, in which case P,(n/k) o (n/k)? resulting in the asymptotic
dependence for n » k

2s

n s
(rs)oc{ 3, 2543
n "k S

W
|

)
A

(20)
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*which is equally valid in the quantum mechanical formulation. Thus, for large n, the
average values of positive powers of r do not depend on k (an asymptotic analogue of
the accidental degeneracy), and the average values of quadratic and higher powers of
the reciprocal of r all have the same functional dependence upon #n. As will be discussed
in § 4.1, it is very difficult to determine dipole and quadrupole polarisabilities using
spectroscopic term analysis data from a single Rydberg series, a direct consequence of
the similarity of the n dependences of (+~*) and (+ ®).

3.2, Penetrating orbits

If the orbit penetrates the core, v, a and € are not constant over the orbital path, but are
functions of the integration variable ¢. The simplest useful model of the core ascribes to
it a well defined radius p, within which the effective charge {. is constant and the dipole
and quadrupole polarisabilities vanish, and neglects external screening. In this case the
orbit segment within the core will have values for its semi-major axis a., eccentricity .
and period 7. different from those of the external segment. Penetration will occur if p
exceeds the externally computed distance of closest approach but is less than the
distance of greatest retreat

a(l-eg)<p<a(l+e). (21)
The angle ® at which penetration occurs can be seen from equation (3) to be given by

cos®=[(1-e%a/p—1]/e. (22)
In terms of the internal orbit this angle has a different value ®,, given by

cos @ =[(1-¢£3)ac/p—1]/ee. (23)

This arises from the fact that the internal and external orbit ellipses have non-collinear
major axes, which leads to an effective precession per completed orbit of 2(®.—®).
Since the true orbit is not closed, we define the average value as twice the integral from
perihelion to aphelion, which, owing to this precession, does not correspond to a
revolution in a stationary (non-precessing) reference frame.

The internal and external orbit parameters can be related by conservation of energy
and angular momentum, which must be the same for the valence electron whether it is
inside or outside of the core. If, at this step, we approximate the energy by a model
which includes the core charge but not the core polarisation, this corresponds to a
spherical shell of charge which adds a constant potential to the internal region. Using
the virial theorem to relate the potential energy to the total energy, this provides a
relationship between the internal and external semi-major axes

_{/za = _{c/zac+ ({c_ {)/P (24)

which, through equation (7), relates the internal and external effective principal
quantum numbers. (In the proper use of the Bohr-Sommerfeld-Wilson quantisation,
the principal quantum number is equated to the action integral over both regions. Here,
using a perturbation approach, we assume that the external quantum number # is well
represented by an integer, but allow the internal quantum number to be non-integer.)
Equation (24) can be rewritten in a symmetric form showing that the quantity (the
energy relative to the aphelion of an S state)

{2-p/a)={2-p/a.) (25)
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is an invariant over the two regions. The length of the internal semi-major axis is given
by

a.=alep/[2({c—{)a+{p]. (26)
Similarly, the orbital angular momentum L
L=2mma*(1-¢>"?*/r 27

(and its corresponding quantum number k) is constant over the orbit, and using
equation (5), can be rewritten

L*/me*=fa(1—¢”)={all—¢2) (28)

yielding another invariant over the two regions and providing a relationship for the
internal eccentricity, which, from equation (26), is

(1—ed)=(1-e)2({c—Da+ L/ Lp. (29)

Since both the desired average value and the effective value of the period 7.z depend
upon the internal and external regions, equation (2) must be broken up into segmental
integrals in both numerator and denominator. Thus

D

r=2 [ (02 [ (40 (30)
and
(yr*)= (2% I:C [der T+ 2 J: [dr rs]exl) Tert (31)

where the subscripted brackets indicate that appropriate segmental values for a and ¢
are used for the internal and external regions. Equations (30) and (31) can be rewritten
in terms of the non-penetrating case by adding and subtracting a fictional integral from
¢ =0 to ¢ = ® which employs the external orbit constants to yield

[

- a i}
Tet = 2 J [dt]int + 2 '[ [dt]cxt - 2 J[ [dt]ext
0 0

0
=7(1+¢:.(0)—¢€(0)) (32)

and

b o]

(yrs)=<2'ch. [dtrs]im+2y-[ [dtrs]ext_z'YJ’ [dtrs]ext> Ten
0 O

0

= Y(rs>ext[1 + (‘YC/‘Y)fc(s) - ((s)]T/Teﬁ (33)
where (r')., is the result obtained from equation (10) and #(s) is given by
— _{_ o ¢m —s=2 v —s5—2 -t
fm(s)—<{m) (L deb (1+ £y cOS ) )(L deb (1+ ¢ cos &) ) . (34)

Here m » cand m —» no subscript denote, respectively, the internal and external regions.
(Ratios of factors involving a, ¢, a. and e, reduce to the charge ratio factor from
equation (28).) The integrals in equation (34) can be performed analytically (Grad-
shteyn and Ryzhik 1965, Robson 1967) and are listed for the desired values of s in
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table 2. Penetration corrections can thus be effected by a multiplicative factor

yr*) =0 +F )7 Vext (35)
where )
ffs = [(‘}/c/‘y)fc(s)_ fc(())_ €(5)+ g(o)]T/Teff (36)
Table 2.
b
s I do (1+ecosp) *°
QO
1 1 =) sind & sin ®
0 2[ 7173 tan ( >~ }
1—e“L{(1—-¢%) £ +cos d 1+ecos®
1 /=D sind
-1 3172 tan ( >
(1—¢7) £+cos P
-2 ()
-3 b+esind
—4 (1+%52)<D+25 sin®+%ezsin¢>cos<b
-6 (1+3e+2eH D +de(1+ ) sin P+3e%(1+5£2) sin G cos D — 35 sin® ®+4e*sin @ cos®>
4. Results

Using the computations of § 3, the term value of equation (1) can be written as
T= Tnon + Tpen (37)
where T, is the non-penetrating portion, given by

{ a{ 3 ds)\ aq k2
fe R (0 0 o)
n k 4n Kk° ag 2n’k’ n’

aq 8 k2 k4>]
s P (35 30°5+3 (38)

and Tp.. is the penetrating portion, given by

"5 -l fﬂ(z - "i” S,

Tpen:R[ 2f1

2

ol Zn{:k (3- )f“ 08§6k (35- 30k2+3k4>f6] 39

Equation (38) is equivalent to the quantum mechanical result if the various powers of k
are replaced by equations (17) and (18), and the substitution

(s)y=3jG+ D=1+ 1) —s(s +1)] (40)

is made, where j is the total angular momentum quantum number. In the penetrating
portion, the same substitutions can be made, and the quantities /_; can be evaluated
using equations (22), (23), (34), (36) and table 2. Notice that the fine structure contains
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three different radial dependences and thus three different penetration corrections
(s =—1, =2 and —3), although only one (s = —3) depends upon the quantum number j.

4.1. Non-penetrating orbits—the spectroscopic core polarisation formula

The standard approach to the determination of dipole and quadrupole polarisabilities
from non-penetrating spectroscopic data is to treat ay and «a, as undetermined
parameters in equation (38) which are fitted to the experimental term values Tpeas fOr a
given atomic ion. This is often done by a linearising procedure in which the cor-
responding hydrogen-like term value Ty (i.e., equation (38) with aq=a,=0) is
subtracted from T,..s and the difference divided by (r74) to yield the linear relationship
(Edlén 1964, pp 125-9)

(Tmeas— Tu)/ Rao(r ™y = aa+ag(r ®)/(r . (41)

A straight-line fit to the data plotted with the expression on the left-hand side of
equation (41) as the ordinate and (r *)/(r ") as the abscissa yields aq and aq as the
intercept and slope. An example of this technique is shown in figure 1 (Toresson 1960).
However, if we examine the dependence of this abscissa over the various (n, k) states,

r® (¢ )2(35 —30k>/n’+3k*/n*)

r ( B-k*/nHK°/k°
we see that there is only a very weak dependence upon n (due to the fact that all
reciprocal powers of r greater than one approach the same n > dependence with large
n). Thus for a given Rydberg series the data points tend to cluster about a narrow range
of abscissae on this plot (as seen in figure 1), giving a poor specification of the intercept
and slope. This illustrates clearly how important it is that data from several Rydberg
series in a given ion are used in this analysis, so that the much stronger k * dependence
in equation (42) leads to widely separated abscissae on the plot, which accurately
determine the intercept and slope.

2a0

(42)

4.2. Highly penetrating orbits—asymptotic form of corrections to the Coulomb energy for
low angular momentum states

Since the r~ contribution to equation (1) comprises the dominant portion of the term
energy, it often corresponds to the largest penetration corrections to the term energy as
well. The penetration correction factor f; can, after some algebraic simplification, be

written as
2

f1=(1—%)[(%>1/2tan1(——(11__52/);:)()—(1—52)”2)(]#eﬁ 43)

where
x=[(p/a)2—p/a)/(1—e>)—1]""? (44)

is a quantity which has the same value on both the internal and external segments of the
orbit. If we consider situations where very heavy charge penetration occurs (. > ¢),
then the argument of the arc tangent in equation (43) is small and negative, and this
function can be approximated by tan ' x = 7 + x, and equation (43) becomes

(o B L EX

La pla.—1 ™ Tett
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From equation (26) we can see that in the extreme limit of large (., we can make the
replacement a.—- p/2. If we further restrict consideration to low angular momentum
statessothatp »a(l—e %12 andto high principal quantum numbers so that p « g, then
equation (45) can be binomially expanded (and written in terms of # using equation (7)),

1 V2er N2 o4 11 7
R CRENERE
n\2ag { K mag/ N ) Test
Thus, neglecting the corrections to the total effective lifetime 7.4, the leading penetra-
tion correction is of the form

3/2 1

Rao<<;r‘l>—z<r‘l>>=R‘—2{[(éﬂ)l/2—1(£”—)m]+3(£"—) ). 47)

3
n 2a¢ m\2a0 m\2a0 n

4.3. Penetrating and non-penetrating orbits—the Rydberg-Ritz quantum defect formu-
lation

With the exception of the Coulomb energy, the leading terms in all of the contributions
to equation (37) are proportional to n 2. This similarity in dependence upon principal
quantum number of the fine structure, the dipole core polarisability, the quadrupole
core polarisability and the core penetration energies is the origin of the success of
Rydberg’s many-electron extension of the hydrogenic Balmer formula. There the term
energy is parametrised by a quantum defect 8, through its definition in the equation

T=R*/(n—-8)° (48)
which, when binomially expanded (assuming 8 < n)

T=R(/n)(1+28/n+...) ' (49)

exhibits this n > correction. A Rydberg series for which & is a smooth function of  is
referred to as ‘unperturbed’. It has been shown (Ritz 1903, Sommerfeld 1919, 1920,
Hartree 1928) that the dependence upon principal quantum number is given by the Ritz
expansion

S=bo+bi/(n—8)2+by/(n—8)"+.... (50)

When expressed as a series in 1/(n — &) rather than 1/n (cf Edlén 1964, p 123, footnote
2) only even powers occur. For small values of & this also corresponds to an even power
series in 1/n, which can be understood from the classical model developed here.
Ignoring questions of mathematical rigor arising when comparing coefficients of a
power series in a variable which does not take on continuous values (Carleman 1922),
we compare equations (38), (39), (47) and (49) and associate the Ritz coefficients b, and
b1 as

242 2 4 1/2
a“f/1 3 °s)) 3aq{" 3Saql ({cp)
= = + + 1
bo=—5 (k an k> ) 4a3k® 16a3k’ \8a, D
aal® 15aql* 1(;,,)3/2
=— - +—==) .
b= e Bask w\2a0 (52)

(The quantity involving 3/4n in the fine structure is in violation of the n dependence of
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equation (49), but it is very small compared to other contributions and can be neglected
in this context.) Equations (51) and (52) display a well known empirical fact, namely
that the sign of b, establishes whether a given state is penetrating or non-penetrating.
The polarisation corrections to b, are negative, but are generally of smaller magnitude
than the positive penetration corrections, and are observed only if penetration is absent.

5. Application—penetration effects for the 3sng G term values in Si m

For ions of the alkali-like Li and Na isoelectronic sequences, it has been found that the
term values are well described by the non-penetrating portion T,,, alone (equation
(38)) for all states for which the orbital angular momentum of the active electron
exceeds that of any of the passive electrons in the inert-gas core (Edlén 1978, 1979).
For the alkaline-earth-like Be and Mg isoelectronic sequences, term values have also
been found to be described by T\,on, but only for much higher angular momentum states,
[=5. An example of this can be seen in figure 1 (Toresson 1960), where the H and I
states of Si 111 are linearly related through equation (41), whereas the G states are not.
Since a g orbital is ‘non-penetrating’ in an alkali-like atom but ‘penetrating’ in an
alkaline-earth-like atom, the deviations from T,,, for the latter probably arise mainly
from interactions with the single out-of-shell s core electron. These deviations could be
due not only to electrostatic charge penetration of the s and g orbitals, but also to npn'f
and nd’ configuration interactions, exchange effects and, to a lesser extent, inter-
mediate coupling. The exchange and intermediate coupling effects can be eliminated
by formation of an appropriately weighted term value centroid of the singlet and triplet
fine-structure states, T, given by

T=(T(L)+TCLY)/2+(TCL1+y)— TCL_1))/2(21 +1). (53)

It can easily be seen from the equations for the energy of a two-electron nsn'l system
(Edlén 1964, equation (16.1), p 111) that both the electrostatic exchange integral and
the spin-orbit integral drop out of equation (53). Thus T involves only the electrostatic
direct integral, so this is the quantity which is most likely to resemble a classical
analogue. Although configuration interaction is not included in the semiclassical
approach proposed here, its presence might be expected to manifest itself through
irregularities superimposed upon the penetration parametrisation. If configuration
interaction effects can be treated in this manner, the alkaline-earth-like g states provide
a good first application for a semiclassical penetration parametrisation, since penetra-
tion of the single out-of-shell core electron charge cloud should be a much less violent
perturbation than that exhibited by more deeply penetrating systems. Therefore we
have fitted the measured Si 111 data to equation (37) for / =4 by suitable choices of the
penetration parameters p and ..

Since it is clear from figure 1 that Si 1 H terms can be considered as non-penetrating
but the G terms cannot, limits for p can be established from the perihelions of the
corresponding classical orbits. For the G states the perihelion ranges from 4.607 a, for
5g to 3.333 a, for the series limit. For the H series limit the perihelion distance is 5 ay.
Thus for the classical model 4.607 <p/ao<S5. Various values of p within this range
were used to map the available measured G term values (listed in table 3) into values for
{. using equations (38), (39) and table 2. The substitutions of equations (17) and (18)
were used for the powers of k, and the values aq = 6.858 a3 and aq=16.15 agextracted
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9g.

T T
0 02 0.4 0.6
K ()

Figure 1. Plot of the variables of equation (41) for the measured G, H and I terms of Si 1.

Table 3. 3sng states in Si 111,

Rao({yr %)~ y(r™™)

s=1 s=4 s=6

n Tmeas Tnon (P =4.7 aO) {C_f Tpred

5 39837.39 39 849.56 66.55 —-67.03 -11.68 0.03500 39 837.55
6 27 665.16 27 662.40 142.19 -116.08 —-23.35 0.063 01 27 663.60
7 20321.31 20310.57 118.47 —88.73 —19.01 0.080 68 20322.64

8 15554.55 15540.33 93.93 —65.23 —14.48 0.095 15 15554.81

9 12285.7 12271.6 73.5 —-48.4 -11.0 0.106 14 12285.30
10 9934.8 57.0 -36.6 -84 0.1132* 9946.8
11 8206.9 44.9 -28.2 -6.6 0.119 1% 8217.1
12 6893.3 35.8 ~22.1 -5.2 0.123 6" 6901.9

* Extrapolated

by Toresson (1960) were used so that equation (38) correctly describes the H and I
terms. It was found that, although the measured G terms could not all be fitted by a
single set of values for p and ¢, a plot of In({.— ¢) versus the orbit eccentricity £ (or,
equivalently, the reciprocal of the perihelion distance, which is linearly related to &)
gave very nearly a straight line, as shown in figure 2. It would be difficult to attach a
physical significance to this empirical relationship, but it does provide a useful means for
extrapolation to higher terms in this Rydberg series. Figure 2 is drawn for ¢{ =4.70, the
value for which the best straight line is obtained.

The results of this parametrisation are listed in table 3. The penetration corrections
to (+7') are positive, reflecting the higher attractive Coulomb force in the internal
region, whereas the penetration corrections to the polarisation energies are negative,
reflecting the assumed disappearance of o4 and a, in the internal regions. Notice that
the internal charges deduced from the measured term values are only very slightly
larger than the external charge (0.03 < {.—- ¢ <0.11 between 5g and 9g). The fact thata
slightly different internal charge must be used for each different principal quantum
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Figure 2. Plot of In({.—¢{) against e =[1~ (] + 1)/r12]”2 with p =4.70 a, for the measured
G terms of Si .

indicates, of course, that the hollow-core model used here is an oversimplification.
However, within the context of this model, the concept of an effective core charge can
be empirically useful. The measured data were fitted to a straight line in the mapping
space of figure 2, and the corresponding predictions for T are listed in table 3. Notice
that the measured n =6 and n =7 term values are displaced from the predicted term
values in a manner which suggests a repulsive perturbation from some configuration
which lies between them. The fit was also used to predict term values for the, as yet
unobserved, n =10, 11 and 12 terms. A similar set of predicted term values was
obtained using a perturbed Ritz expansion (cf Edlén 1964, equation (23.1), p 137).
Although these two approaches were essentially equivalent in their ability to reproduce
the measured data, the penetration parametrisation has the advantage of a direct
physical interpretation for its fitting parameters which could be useful in extending its
application not only along a Rydberg series, but also isoelectronically and homolo-
gously.

6. Conclusion

The approach used here has been to represent a many-electron atom by the simplest
non-trivial semiclassical model. The simplicity is important, since a full semiclassical
treatment, if meaningful, would involve great numerical complexity and offer no
advantage over a full quantum mechanical treatment. This approach provides insight
into the origin of a number of empirical formulae of atomic spectroscopy and, in
appropriate limits, reduces to the core polarisation and Rydberg-Ritz quantum defect
parametrisations. The approach also provides a new empirical parametrisation for core
polarisation which aids in systemisation of atomic spectral data.
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