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For a separable or nonseparable system an appro“m'mtc solution of the
Schrodinger equation is constructed of the form Ae™” 'S, From the gingle-
valuedness of the solution, assuming that A is single-valued, a condition on S is
obtained from which follows A. Einstein’s generalized form of the Bohr-Som-
merfeld-Wilson quantum conditions. This derivation, essentially due to L.
Brillouin, yields only integer quantum numbers. We extend the considerations
to multiple valued functions A and to approximate solutions of the form

Z Ay exp (1h718).

In this way we deduce the corrected form of the quantum conditions with the
appropriate integer, half-integer or other quantum number (generally a quar-
ter integer). Our result yiclds a classical mechanical principle for determining
the type of quantum number to be used in any particular instance. This fills a
gap in the formulation of the “‘quantum theory’’, since the only other method
for deciding 'upon the type of quantum number—that of Krumers—applies
only to sepurable systems, whereas the present result also applies to nonsepa-
rable systems,

In addition to yielding this result, the approximate solution of the Schré-
dinger equation—which can be constructed by classical mechanics—may
itself prove to be useful.

INTRODUCTION

In the “quantum theory” the motion of a system is described by classical
mechanics but certain constants of the motion are restricted to be integers.
These restrictions are called the quantum conditions and the integers occurring
in them are called the quantum numbers. In many cases better agreement be-
tween theory and observation is obtained if half-integer quantum numbers are
employed instead of integers. However no theoretical principle is available to
determine whether an integer, half-integer or other quantum number is to be
used in any particular case. It is the purpose of this article to provide such a
principle.

* This article is based upon a report (1) sponsored by the Geophysics Research Direc-

torate, Air IForce Cambridge Research Center, Air Research and Development Command,
under Contract No. AF10(122)-463.
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Historically the problem of deciding between integer and half-integer quan-
tum numbers was circumvented by the invention of quantum mechanics, which
replaced the “quuntum theory”. Thercfore the discovery of a procedure for
deciding between the two kinds of quantum numbers might now be considered
to be of purcly academic interest. IHowever this is not necessarily the case be-
cause the procedure can still be used in the approximate solution of quantum
mechanical problems.

A way of deciding between integer and half-integer quantum numbers for
separable systems was found by Kramers (2) by means of an approximate
solution of the Schrédinger equation. His result also showed that for such sys-
tems these conditions are consequences of quantum mechanics in the limit as
Planck’s constant k tends to zero. Anotlwpdonva.tlon of the quantum conditions
from the Schridinger equation was given by Brillouin (3). It was more general
than Kramers’ since it applied to both separable and nonseparable systems,
but it was incorrect since it yielded only integer quantum numbers. Brillouin’s
argument is essentially the following:

Consider a quantum mechanical system with N coordinate operators ¢,, N
conjugate momentum operators p, = —ih '(8/d¢,), r = 1, , N, and Hamil-
tonian operator H(q,, p., {). Let the Schrédinger representor of the state of
the system be ¥(q, , £). Suppose that ¥ is approximately equal to ¥, defined by

= A(g., 4, k) exp [ih 7' S(g. , ¢, B)). (1
The function ¥ and hence ¥, must be single valued. Therefore if S is multiple

valued and if AS denotes the difference between any two of its values it is
necessary that
AS = nh. (2)
Here n is an integer. This condition guarantees that ¥, will be single valued
ceven if S is not. The quantum conditions with integer quantum numbers follow
from (2), as will be shown below. We will also show that (2) is equivalent to
the quantum condition postulated by Einstein (4) in generalizing the Bohr-
Sommerfeld-Wilson conditions to nonseparable systems.
We note that Brillouin’s argument assumes that A is single valued. However
if A is not single valued then in order for ¥, to be single valued (2) must be

replaced by
As=h[n+¢%5_4]. 3)

Suppose, for example, that two values of A differ only in sign. Then A log 4 =
—ir and (3) yields

= hln + 13). )
From (4) the quantum condition with a half-integer quantum number follows.
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We have just indicated how to modify Brillouin’s argument in order to ob-
tain the appropriate integer, half-integer or other quantum number. To com-
plete the argument we must examine the amplitude A. This will be done in the
next sections. However we must first make another change in the method. In-
stead of (1), we will assume that ¥o is 2 sum of terms given by

M
¥y = ,‘Zl Ak(Qr y 4 R) €xp [ih—,Sk(q" 4 Rl (5)

This more general form of approximate solution is required in almost all prob-
lems in which S is multiple valued. The various functions S; and A, will be
considered to be different branches of multiple valued functions S and 4. We
will also make our considerations more definite by assuming that ¥ is asymptotic
to Wo as Planck’s constant # tends to zero. This viewpoint was introduced by

Birkhoff (5).
ASYMPTOTIC SOLUTION OF THE SCHRODINGER EQUATION

The function ¥ satisfies the Schrodinger equation
., 0¥
H(gr, pr, O¥(g,, ) = ih 57 (@ D (6)

Upon inserting the expression (5) for ¥, into (6) and considering the leading
terms in £ we obtain equations for the A, and Sk . These equations were derived
by Dirac (6) when W, consists of a single term and the same analysis applies
when ¥o is & sum of terms. The result is that each S; satisfies the classical Hamil-
ton-Jacobi equation

aSk — aSI:
H (qr) QE ’ t) = ét—' (7)

The equation for each Ay , written in terms of P, = A:® and

JoH
v, = 07% (gr, 6S/6qr, t),

is
?& + i i [v;:P,} = 0. ’ (8)
at r=1 aqr

Equation (8) is the Liouville equation of classical statistical mechanics for the
probability distribution P of a classical mechanical system with Hamiltonian
H. It is a special form because P, depends only upon ¢, and ¢, but not upon
vy or p, as is usual in classical mechanics, This is a consequence of the fact that
quantum mechanics does not yield joint probability distributions of conjugate
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variables. It is to be noted that P, is not necessarily positive, nor even real, in
the present case. We will also permit S; to he complex. ,

.Let us solve (7) when H is independent of ¢, Then H = E, where the constant
I is the total energy of the system. Now if ¢-(t), p.(t) denote a trajectory, then
the function S, is given at any point, of the trajectory in terms of its ,vnlue
S¢(0) at some fixed point on the trajectory by

S 1) < 500) + ' z: p) 00 4, _ gy

= 8(0) + fo ' é prdg, — I o

Equation (8) can also be solved at once if P, ié independent of ¢, for then it
becomes ’

N

7]
2 5g, P = 0. (10)
Equation_ (10) asserts that the probability flux is divergenceless, and therefore
by applying Gauss’ theorem to a tube of trajectories we obtain

doy

ka = Pl-(O)Uo-(E . (ll)

In (11)

and do is the normal cross sectional area of the tube of trajectories, both evalu-

ated at the same point at which Py is evaluated. The corresponding quantities

", doo, and P.(0) are evaluated at some other point on the same trajectory,
»

THE QUANTUM CONDITIONS

Quantum mechanijes requires that ¥ be a single valued function of the g, and
lherefoye Yo must satisfy the same condition. Consequently each term ix; the
O'Xpresm-on (5) for ¥ must be single valued. As we have shown in the Introduc-
tion, this requires that_ each S; and the corresponding A, must satisfy the condi-

(2) for the corresponding S, .
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The differences ASi(g, , £) and A log Ai(q., t) are expressible as line integrals
over some closed curve in ¢, space beginning and ending at ¢, . In terms of these
integrals, (3) becomes, for each value of k,

£ VS-ds =h [n+2—i—f VlogA-ds]. (12)

Equation (12) must hold for every closed curve in the g, space, sin?e only then
will ¥, be single valued at every point. However the line integrals in (12) have
the same value for every two closed curves which are deformable into one an-
other without crossing a singularity of the integrand. For example, they are
zero for a curve which can be deformed into a point. There are, in general, only
a finite number of classes of independent curves which cannot be deformed into
points. Any other curve is deformable into a linear combination of such curves
with integer cocflicients. Therefore (12) will be satisfied for all curves if it is
satisficd by one curve in each of the independent classes of curves. Tl.lus we
have, in general, a finite number of quantum conditions, in each of which the
integer n is arbitrary.
Since VS-ds = ), prdg,, (12) can be rewritten as

£ 2 pdg = h[n+2%'f VlogA-ds]. (13)

When A, is single valued, the conditions (13) become exactly the quantum con-
ditions postulated by Llinstein (4) for a system in a steady state of constant
energy. e pointed out that these quantum conditions are invariant under
contact transformation of variables beeause Y p,dq, is invariant. If the vari-
ables are separable in the Hamilton-Jacobi equation, so that each p, can be
* expressed in terms of the corresponding ¢, alone, and if A, is single valued, then
these conditions reduce to the well known Bohr-Sommerfeld-Wilson quantum
conditions for a separable system in a steady state of constant energy.

In order to clarify the conditions (12) and (13) let us consider a multiple valued
solution S of the Iamilton-Jacobi equation. Such a solution generally has
infinite multiplicity, i.e., an infinite number of different values or branches.
However only a finite number of its branches, say 3/ of them, are essentially
distinet. Ivery other branch differs from one of these branches by an additive
constant. Therefore the function V.S avill have only -the finite multiplicity M
sinee any two branches differing by a constant yield the same value for YS.
Let us introduce an_ 3/-sheeted ¢, space and associate one branch of the function
V.S with each sheet. We will denote each sheet by an integer & and the correspond-
ing branch of V8 by VS, with k ranging from one to M. Any two sheets—say
sheets j and k—are to be joined together at all points where V.S; = V8, . Further-
niore if VS is defined in only part of the ¢, space then only that part is covered
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by additional sheets. The M sheeted ¢, space so constructed is called the covering
space for the function VS, Its main property is that on it VS is a single valued
function. The Riemann surfaces of function theory are cxamples of such spaces.

The same considerations may be applied to the multiple valued function log A.
Its gradient has the same multiplicity M as does VS as we see from (8) and its
different branches become equal where those of VS do. Therefore the same
covering space on which VS is single valued also serves as the covering space for
Vlog A. Consequently the line integrals in (12) and (13) may be thought of as
being evaluated along a closed path on this covering space. Then the omission
of the subscript & in (12) and (13) is appropriate since any number of branches
may be involved in each integral. Also the question of whether one closed curve
is deformable into another becomes clear ithis space. Furthermore, the inde-
pendent closed curves can be recognized as the basis of the fundamental group
of the covering space. In this way we see that the topology of the covering space
determines the number of quantum conditions. This number is just the number
of closed curves in the basis of the fundamental group.

Let us now consider the evaluation of

AlogA = £ Vlog A-ds.

We will restrict our attention to steady. states since then 4A* = P is explicitly
given by (11). From this equation we see that P becomes infinite whenever vdo
becomes zero. We will call points at which this occurs caustic points, in analogy
with optics where points at which de = 0 are so named. A locus of caustic points
is called a caustic of the family of trajectories associated with the S function
under consideration. Those caustics which correspond to the vanishing of de are
envelopes of the family of trajectories. Therefore VS is multiple valued near these
surfaces. Consequently such caustics are the loci of points at which two different
branches of V.S become equal. Thus these caustics form the boundaries at which
different sheets of the covering space for VS are joined together. Those caustics
at which v = 0 also form part of these boundaries, assuming that each p, either
changes sign along each trajectory on which v vanishes or is identically zero near
the caustic. For then VS, which has the Pr as components, reverses its direction
at the caustic. Thus this type of caustic is also a boundary on which two branches
of VS join.

We have seen that 4 becomes infinite on a caustic and that a caustic must be
crossed by a path which goes from one sheet of the covering space to another. It
is well known in optics that the phase of A isretarded by »/2 (i.e., 4 is multiplied
by ¢7**) on a ray which passes through a caustic on which -do vanishes simply.
(The positive direction along a ray is the direction of V8.) Furthermore the phase
is retarded by x on a ray passing through a focus, which is a caustic point at
which do vanishes to the second order. The usual method for proving these facts
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is based upon the asymptotic evaluation of certain double integrals which repre-
sent the wave function. These integral representations are deduced from Green’s
theorem, and the integrals are evaluated by the method of stationary phase.
Both of these considerations can be immediately extended to problems such as
the present one in which the number of dimensions is N. The result is this: The
phase of A is retarded by mw/2 on a trajectory which passes through a caustic
on which de vanishes to the mth order. We may replace the statement “do
vanishes to the mth order” by the equivalent statement “the dimensionality of
the cross section of a tube of trajectories is reduced by m’'. This result is an
analogue for partial differential equations of the Kramers connection formulas
which are employed in the WKB treatment of ordinary differential equations.
In the present case the caustics play the role of the turning points.

I'rom the foregoing analysis we see that log A changes by —imw/2 along a
path which passes from one sheet of the covering space to another in the direction
of VS. Iere the positive integer m is the number of dimensions “lost” by a tube
of trajectories at the caustic. Obviously m must be replaced by —m if the path
is traversed in the opposite direction. Considerations similar to those outlined
above show that at the caustics on which v vanishes the phase of A is also re-
tarded by mx/2, so log A changes by —tm=x/2 where m is the number of p, which
change sign at the caustic. :

The total change A log A along a closed curve is generally just the change
associated with the various caustics through which the curve passes. Therefore,
in general, we have

L AlogA = FViogA-ds = . (14)
2r 27 4
1ere m denotes the total number of dimensions “lost” by the trajectories at the
caustics through which the curve passes plus the number of p, which change sign
at the v = 0 caustics through which the curve passes. In evaluating m aecount
must be taken of whether the curve traverses the caustic in the direction of in-
creasing or decreasing S. When (14) is used the quantum conditions (13) finally

become

These are the corrected quantum conditions for separable or nonseparable sys-
tems. In each quantum condition the positive integer n is arbitrary but the integer
m is determined by the considerations described above.

THE “CLASSICAL ¥ FUNCTION”

We will call the function ¥, given by (5) the “classical ¥ function” because it
carr be constructed by classical mechanical considerations alone. In spite of this
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the probabilities computed from | ¥, |* still show quantum mechanical interfer-
ence effects if the sum in (5) contains more than one term.

If only one term occurs in (5) then | ¥ |* = | A |* exp (—=2h7'ImS), and the
probability, as well as ¥, itself, is exponentially damped in regions where
ImS > 0. The probability in such regions vanishes as A tends to zero, correspond-
ing to the fact that these regions are excluded in classical mechanics. This can -
be seen from the fact that the solution of the Hamilton-Jacobi equation is not
real there. The exponential tail shows that ¥, describes such quantum mechanical
effects as “tunneling”. )

If ImS =0and |A|' = A* = P, then | ¥, |’ = P. Thus as h tends to zero
the quantum mechanical probability distribution approaches that given by the
Liouville equation of classical statistical mgchanics, and we may say that quan-
tum mechanics approaches classical statistical mechanics, as h tends to zero.
The customary statement that quantum mechanics approaches classical mechan-
ics is thus not strictly correct, but holds only when the initial data are such that
P = 0 except on one trajectory, in which case classical statistical mechanics re-
duces to classical mechanics. Since the classical method of computing differential
scattering cross sections is actually based on classical statistical mechanics, the
preceding considerations show that the quantum mechanical cross sections’ will
approach them as h tends to zero when only one term occurs in (5).

Finally it is to be noted from (13) or (15) that k and n enter the solution only
in the combination (n 4+ Y4m)h. In some problems the solution for fixed n does
not have the asymptotic behavior assumed in the derivation. However when the
limit in which n becomes infinite while & becomes zero and (n + Y{m)h is con-
stant is considered, the assumed asymptotic behavior may result. In such cases
the asymptotic solution applies only for high quantum numbers n.

AN EXAMPLE—THE HARMONIC OSCILLATOR

'To ef<emp]ify the preceding results, let us consider the steady state of a one-
dimensional harmonic oscillator of mass m, energy E, frequency », , and momen-
tum p. Recalling that S, = p, we have from the definition of momentum

S:=p=x2mE — m vz’ (16)

We see that VS = S, is real and double valued in the interval —z, £ z < x,
Wl.lel‘e Zo = (2Ev™")""%. The two branches of S, become equal at the end—poin:s of
this interval. Thus the covering space for S consists of two line segments joined
together at their two ends. This space is topologically equivalent to a circle, and
there is only one basic closed curve on it. Therefore there is only one quantum
condition. The closed curve passes through the two caustics z = 4z, at both of
which » = m™'p vanishes and p changes sign. Thus in (15) we have m = 2 so
(15) becomes
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xIQ e 1 ] N / 1
f @mls — myex)"? dx — fto @QmE — mve)dx = h (n + Q)' a7
—ro
Lquation (17) is just the result given by the usual WKB method ?n this case.
A similar analysis holds for a particle in any one dimensional potential well..

To construct ¥y we note that dao/de = 1 in the present case so (11) yields,

with Ag a constant,

A= Agv (18)

‘Inscrting p = m'p in (18) with p given by (16) we obtain the two results
. A, = Am™@E — v : (19)
A = A RE — v’y (20

The phase retardation represented by the factor cj' " in (20? accounts for the
phase shift which occurs upon passing through either caustic. In t'P,e. present
example it arises formally when p is negative and the square root of p~ 1s taken.
Of course our previous considerations are necessary to ensure that we take the

correct root. ‘ ) '
Upon inserting (19), (20), and (16) mto (5) and setting S(x0) = 0, we obtain
for We(x) in the region |z | = o,

Ed ]
At @B — w) {exp [—,-h—‘ [ @mE — o) dx]

ETY i
+ exp [—ig + 7 f @ml — mua)'"? dw]} (21)

Wo(x)

; 2\ —1/4 —1 o - 2\1/2 2'_'
= g 2E — vx)T ' cos | h f 2EmE — mwx’)  dxr — al

This is the usual WKB result. We may obtain the result for a particle in any onc
dimensional potential V(x) by replacing vor” by 2V (x) in (21).

ReckrveDp: January 23, 1958
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Mesons and the Structure of Nucleons

Part |l. The Nucleon Isobar and Pion Dynamics*

Bernarp T. FELD

Physics Department and Laboralory Jor Nuclear Science, Massachuselts Inalitule
of Technology, Cambridge, Massachuselts

An “atomic’”’ model of the physiE{l~ nucleons, previously applied to the
nucleon ground states,’is extended to describe the excited isobar nucleon state,
of angular momentum and isotopic spin 3/2. The model is used to compute the
cross sections for resonant photoproduction of pions and Compton scattering
of photons on protons. Other, nonresonant processes are taken into account
in a phenomenological fashion, and the computed cross sections for the afore-
mentioned processes are compared with available experimental data. The
model is also used as a guide for the phenomenological interpretation of other
high-energy processes—in particular, photodisintegration of the deuteron in
the region of the photomeson threshold, and the resonant »~ — P interaction
at ~1 Bev.

INTRODUCTION

In an carlier communication (1) a model was developed in which the physical
nucleons (proton and neutron) were depicted as bound systems of a nucleon-like
core and a single pion. The main features of the physical nucleons were seen to
he determined by the condition that the core (spin and isotopic spin 1/2) and the
pion (spin 0, isotopic spin 1) are bound in a py state of total isotopic spin T' =
1/2. ,

In considering, in I, the field-theoretic basis for this model, it was observed
that the pion-nucleon forces in the ps. state with T = 3/2 are also expected to
be attractive, although less strongly than in the ground state. The existence of
such an attraction is manifest in the well-known resonance phenomena associated
with p-wave pion scattering and production in the T = J = 3/2 state. Indeed,
these resonance phenomena are so pronounced as to suggest the existence of a
quasi-stationary or virtual state of the nucleon, the so-called’ (3,3) or “isobar”
state. :

* This work was supported in part by the joint program of the Office of Naval Research
and the U. S. Atomic Energy Commission.

! Henceforth referred to as 1.

t It is customary, in this field, to characterize the various states of a single nucleon and
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