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The Einstein–Brillouin–Keller semiclassical quantization and the topological Maslov index are
used to deduce the correct quantum mechanical values for the energy of a one-electron atom~both
nonrelativistically and relativistically! and a three-dimensional harmonic oscillator. The
development is concise, transparent, and involves only elementary integral calculus and provides a
conceptual and intuitive introduction to the quantum nature of the atomic and molecular structure of
matter. © 2004 American Association of Physics Teachers.
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I. INTRODUCTION

A simple semiclassical means for obtaining correct qu
tum mechanics results without invoking the full mathemat
of the Schro¨dinger equation is provided by the Einstein
Brillouin–Keller ~EBK! action quantization.1–3Although this
approach is a well-known tool in contemporary atomic a
molecular theory, its usefulness and pedagogical value
been largely overlooked in elementary textbooks. Unfor
nately, textbooks tend to perpetuate and then disparage
flawed and archaic Bohr–Sommerfeld–Wilson qua
tization,4–6 which ~as was recognized shortly after i
introduction!1 fails to properly account for caustic phas
jumps at the classical turning points.

The EBK quantization approach1–3 involves a path inte-
gral over the phase space of each coordinateqi and its con-
jugate momentumpi , given by

S ni1
m i

4 D\5
1

2p R dqi pi , ~1!

whereni50,1,2,̄ , m i is the Maslov index,7 which is the
total phase loss during one period in units ofp/2, and\ has
its usual meaning. For example, each classical turning p
~or caustic! and each reflection contributes one unit tom i .

EBK quantization has been applied to one-dimensio
examples,8 quantum defect formulations,9 the one-
dimensional harmonic oscillator,10 atoms in strong magneti
fields,11 and many other interesting systems. Our purp
here is to review the application of the method and show
it also can be used to obtain the correct quantum mechan
energy values for both the one-electron problem and
three-dimensional isotropic harmonic oscillator.

II. SPHERICAL POLAR COORDINATE
FORMULATION

We will use the usual three-dimensional spherical po
coordinatesr , q, and w, where q is the azimuthal angle
specifying the tilt of the orbital plane relative to an arbitrar
chosenz axis. If the radial coordinate has distances of clos
approach and greatest recession denoted byr 1 and r 2 , and
the normal to the plane of the orbit makes an angleQ with
thez axis, then the ranges of the coordinates over the orb
motion are given by

r 1<r<r 2 , ~2a!

p/22Q<q<p/21Q, ~2b!
1 Am. J. Phys.72 ~9!, September 2004 http://aapt.org
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0<w<2p. ~2c!

Thusr andq undergo librations~oscillate between two end
points! andw undergoes a rotation.

The momenta associated with these three coordinates
be motivated for beginning students on the basis of con
vation of energy. However, for background clarity, the ge
eralized momenta will be obtained using the Hamilton
Jacobi formalism.12 This formalism involves the constructio
of the Lagrangian in terms of the coordinatesqi and their
time derivativesq̇i . The generalized momentum canonical
the coordinateqi is obtained by differentiating the Lagrang
ian with respect toq̇i . The Hamiltonian is then formed by
reexpressing theq̇i quantities in terms of the generalize
momenta. For this case, the Hamiltonian is given by

H5
1

2m S pr
21

pq
2

r 2 1
pw

2

r 2 sin2 q D 1V~r !. ~3!

Because the potential does not involve angular coordina
the q andw momenta can be separated

pw
25constant, pq

2 1
pw

2

sin2 q
5constant. ~4!

We denote the first constant asLz
2 , the second constant a

L2, and the Hamiltonian energy asE, and write

pw5Lz , pq5AL22
Lz

2

sin2 q
, ~5!

and

pr5A2m@E2V~r !#2L2/r 2. ~6!

The phase integrals for the Kepler and isotropic harmo
oscillator problems consist of two librations~one in r and
one in q! and one rotation~in w!. All three integrals are
known forms8 and have been obtained by methods that h
been discussed in detail.13,12 The phase integrals are

S nr1
1

2D\5
1

2p R drA2m@E2V~r !#2
L2

r 2 , ~7!

S nq1
1

2D\5
1

2p R dqAL22
Lz

2

sin2 q
5L2Lz , ~8!

nw\5
1

2p R dw Lz5Lz . ~9!
1/ajp © 2004 American Association of Physics Teachers
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The r quantization in Eq.~7! requires the specification o
V(r ). Theq andw quantizations of Eqs.~8! and~9! are the
same for any central potential.12 If Eqs. ~8! and ~9! are
added, we obtain

S nq1nw1
1

2D\5L. ~10!

To obtain a notation consistent with that utilized in the c
responding quantum mechanical formulation, we denote

,[nq1nw ~11!

m,[6nw , ~12!

where the6 indicates a counterclockwise or clockwise a
muthal integration. In this notation,

L5S ,1
1

2D\ ~13!

Lz5m,\. ~14!

Note that the value forL2/\25(,1 1
2)

25(,21,1 1
4) agrees

with the quantum mechanical result,(,11) for ,@1.
For the radial integration, a useful integral is

1

2p R dz

z
AAz212Bz2C52AC1

B

A2A
. ~15!

The proof of this equality using contour integration~with
poles atz50 and 1/z50) is described in Ref. 12; the resu
will be used in the discussion that follows.

III. APPLICATIONS

A. One-electron atom or ion „nonrelativistic…

For a hydrogen atom~or a hydrogenlike ion with nuclea
chargeZ) the potential is

V~r !52KZe2/r . ~16!

This potential leads to the radial EBK quantization integr

S nr1
1

2D\5
1

2p R drA2mS E1
KZe2

r D2
L2

r 2

5
1

2p R dr

r
A2mEr212mKZe2r 2L2.

~17!

Equation ~17! can be evaluated using Eq.~15!, with A
52mE, B5mKZe2, andC5L2 to obtain

S nr1
1

2D\52L1KZe2A2
m

2E
. ~18!

From Eq.~13!, we have

S nr1
1

2D\1L5~nr1,11!\, ~19!

and we define the principal quantum numbern as

n[nr1,115nr1nq1nw11. ~20!

The substitutionsKe252Rya0 and\2/m52Rya0
2 are conve-

nient in converting to atomic units. In these units, the ene
is given by
2 Am. J. Phys., Vol. 72, No. 9, September 2004
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E52RyZ
2/n2. ~21!

The values forE, Lz , and the correspondence limit ofL2

agree with the predictions of nonrelativistic Schro¨dinger
theory.

B. One-electron atom or ion„relativistic …

Although there are problems12 associated with obtaining a
relativistically covariant description within the Hamiltonia
approach, it is possible to incorporate relativistic moment
corrections into this formulation. For an electrostatic Co
lomb potential, the relativistic energy can be written as

E1mc25A~pc!21~mc2!22KZe2/r . ~22!

We rewrite Eq.~22! as

@~E1mc2!1KZe2/r #25~pc!21~mc2!2, ~23!

and solve for (pc)2:

~pc!25S pr
21

L2

r 2 D c25E~E12mc2!1
2KZe2

r

3~E1mc2!1
~KZe2!2

r 2 , ~24!

which can be rewritten as

pr
252mES 11

E

2mc2D1
2mKZe2

r S 11
E

mc2D
2

1

r 2 @L22~KZe2/c!2#. ~25!

Equation~25! can be expressed in terms of atomic units
noting that the fine structure constanta[Ke2/\c. Thus, the
radial dependence of the relativistic form ofpr is the same as
that of the nonrelativistic form, if we make the associatio

A52mES 11
E

2mc2D ~26a!

B5mKZe2S 11
E

mc2D ~26b!

C5@L22~aZ\!2#. ~26c!

The radial EBK condition becomes

S nr1
1

2D\52AL22~aZ\!21
mKZe2~11E/mc2!

A22mE~11E/2mc2!
.

~27!

We use Eq.~13!

n2,2
1

2
1AS ,1

1

2D 2

2~aZ!2

5
aZ~11E/mc2!

A22E/mc2~11E/2mc2!
, ~28!

and obtain
2Lorenzo J. Curtis and David G. Ellis
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~E1mc2!

5mc2H 11
~aZ!2

Fn2,2
1

2
1AS ,1

1

2D 2

2~aZ!2G2J 21/2

.

~29!

Equation ~29! is the relativistic equation obtained b
Sommerfeld.5 Note that if the orbital angular momentum, in
this semiclassical expression is replaced by the total~orbital
plus spin! angular momentumj , the correct relativistic ex-
pression for the Dirac energy is obtained.

By taking differences between the Dirac energies for
two values of the total angular momentumj 5,1 1

2 and j
5,2 1

2 ~corresponding to the parallel and antiparallel alig
ment of the spin and orbital angular momentum!, the fine
structure separation can be specified. This calculation ca
done directly, or~for students with more mathematical fac
ity! using a closed form series expansion14 for Eq. ~29!, the
first two terms of which are

E52
mc2

2 F S aZ

n D 2

1S aZ

n D 4S n

j 1
1

2

2
3

4D G , ~30!

which can be compared with the nonrelativistic express
by noting thatRy5mc2a2/2.

C. Isotropic harmonic oscillator

The potential of an isotropic harmonic oscillator is

V~r !5
1

2
mv2r 2. ~31!

Equation~31! leads to the radial EBK quantization integra

S nr1
1

2D\5
1

2p R drA2mE2m2v2r 22
L2

r 2

5
1

2p R dr

r
A2mEr22m2v2r 42L2. ~32!

The substitutionz5r 2 transforms Eq.~32! to

S nr1
1

2D\5
1

2

1

2p R dz

z
A2mEz2m2v2z22L2, ~33!

which is of the form of Eq.~15! with A52m2v2, B
5mE, andC5L2, and yields

S nr1
1

2D\5
1

2 F2L1
E

vG . ~34!

We again use Eq.~13! and find
3 Am. J. Phys., Vol. 72, No. 9, September 2004
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E5S 2nr1,1
3

2D\, ~35!

where the principal quantum number is defined as

n[2nr1,52nr1nq1nw . ~36!

IV. CONCLUSION

Our results provide a compact introduction to the quant
nature of matter, without the need for a knowledge of par
differential equations, infinite series, complex variables,
the other mathematical tools of quantum mechanics.

The introduction of the quantization of action also fits
well with the fundamental role played by this quantity in th
principle of least action. In a recent essay,15 Taylor suggested
the use of least action methods as a more flexible and m
powerful teaching approach than traditional Newtonian m
chanics. It has been shown8 that Newtonian physics can b
expressed in terms of classical position probability densi
by examining the ‘‘dwell time patterns’’ given by the recip
rocal speed. The use of EBK quantization provides a dir
connection between these classical position probability d
sities and the fully quantum mechanical solution with a mi
mum of mathematical detail.
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