Use of the Einstein—Brillouin—Keller action quantization
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The Einstein—Brillouin—Keller semiclassical quantization and the topological Maslov index are
used to deduce the correct quantum mechanical values for the energy of a one-electr@mo#iom
nonrelativistically and relativistically and a three-dimensional harmonic oscillator. The
development is concise, transparent, and involves only elementary integral calculus and provides a
conceptual and intuitive introduction to the quantum nature of the atomic and molecular structure of
matter. © 2004 American Association of Physics Teachers.
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|. INTRODUCTION O<op<2m. (20

A simple semiclassical means for obtaining correct quanThusr and ¢ undergo librationgoscillate between two end-
tum mechanics results without invoking the full mathematicspointg and ¢ undergoes a rotation.
of the Schrdinger equation is provided by the Einstein— The momenta associated with these three coordinates can
Brillouin—Keller (EBK) action quantization=*Although this  be motivated for beginning students on the basis of conser-
approach is a well-known tool in contemporary atomic andvation of energy. However, for background clarity, the gen-
molecular theory, its usefulness and pedagogical value hasralized momenta will be obtained using the Hamilton—
been largely overlooked in elementary textbooks. Unfortu-jacobi formalisnt? This formalism involves the construction
nately, textbooks tend to perpetuate and then disparage thg the Lagrangian in terms of the coordinaigsand their
flawed ~and archaic Bohr—Sommerfeld—Wilson ~quan-ime derivatives), . The generalized momentum canonical to
pzatl((j)n, . ‘{V?'C.Ih (as was Irecognlzedfshortly .afteL 'S the coordinateg; is obtained by differentiating the Lagrang-
introduction™ fails to properly account for caustic phase ian with respect t@}; . The Hamiltonian is then formed by

reexpressing the); quantities in terms of the generalized

jumps at the classical turning points.
The EBK quantization approatft involves a path inte- : - s B e
momenta. For this case, the Hamiltonian is given by

gral over the phase space of each coordigtend its con-

jugate momentunp; , given by 1/, p3 pi
=—|pi+ o+ oo | + V().
Wi 1 H=om| Pt 2t gy TVD &)
ni+—|h=5= %inpi, 1) . . .
4 2 Because the potential does not involve angular coordinates,
wheren;=0,1,2;--, u; is the Maslov indeX, which is the the ¢ and ¢ momenta can be separated
total phase loss during one period in unitsm®2, and# has p2
its usual meaning. For example, each classical turning point pizconstant, p§+ ﬁzconstant. 4

(or causti¢ and each reflection contributes one unitup.
EBK quantization has been applied to one-dimensionaiyve denote the first constant &4, the second constant as
example$, quantum defect formulatior’s, the one- |2 and the Hamiltonian energy & and write
dimensional harmonic oscillaté?,atoms in strong magnetic '
fields!* and many other interesting systems. Our purpose L:
here is to review the application of the method and show that  P,=L,, Py=\/L*~ SE o )
it also can be used to obtain the correct quantum mechanical

energy values for both the one-electron problem and thand
three-dimensional isotropic harmonic oscillator.

p,=V2m[E—V(r)]—L?/r?. (6)
[I. SPHERICAL POLAR COORDINATE The phase integrals for the Kepler and isotropic harmonic
FORMULATION oscillator problems consist of two libratiorfene inr and

) ] ) ) one in ) and one rotationin ¢). All three integrals are
We will use the usual three-dimensional spherical polaiknown formé§ and have been obtained by methods that have
coordinatesr, 9, and ¢, where 9 is the azimuthal angle peen discussed in deta!? The phase integrals are
specifying the tilt of the orbital plane relative to an arbitrarily

choserr axis. If the radial coordinate has distances of closest
approach and greatest recession denoted;bgndr,, and

the normal to the plane of the orbit makes an ar@levith
the z axis, then the ranges of the coordinates over the orbital
motion are given by

1 L®
ﬁ:ﬁ fﬁdr\/Zm[E—V(r)]—r—z, @

1)%- ! 3gd19\/L2 Lg =L—-L 8
Nt 3" om Csikd 7 ®
rs<r<r,, (29

1
T2—O<I<7w/2+0, (2b) n(pﬁzz % de L,=L,. 9)

1
nr+§
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The r quantization in Eq(7) requires the specification of
V(r). The 9 and ¢ quantizations of Eq98) and(9) are the
same for any central potentit.If Egs. (8) and (9) are
added, we obtain

h=L. (10

1
nﬂ‘l‘ n(p—l— E

E=—-R,Z%n% (21)
The values forE, L,, and the correspondence limit of
agree with the predictions of nonrelativistic Scttiroger
theory.

To obtain a notation consistent with that utilized in the cor-B. One-electron atom or ion(relativistic)

responding quantum mechanical formulation, we denote
(12)
(12)

{=ny+n,

mezin(P,

Although there are problertfsassociated with obtaining a
relativistically covariant description within the Hamiltonian
approach, it is possible to incorporate relativistic momentum

L . . . corrections into this formulation. For an electrostatic Cou-
where thex indicates a counterclockwise or clockwise azi- lomb potential, the relativistic energy can be written as

muthal integration. In this notation,

f (13

L—€1
_+§

L,=m,h. (14)

Note that the value fot?/#2=(€+ 3)?=(¢?+ €+ 1) agrees

with the quantum mechanical resul(¢ +1) for €>1.
For the radial integration, a useful integral is

1 dz B
— ¢ —JAZ+2Bz-C=—C+ —.
z J-A

= (15
The proof of this equality using contour integratiéwith

poles atz=0 and 12=0) is described in Ref. 12; the result \yhich can be rewritten as

will be used in the discussion that follows.

[ll. APPLICATIONS

A. One-electron atom or ion (nonrelativistic)

For a hydrogen atorfor a hydrogenlike ion with nuclear
chargeZ) the potential is

V(r)=—KZzéer. (16)

E+mc®=/(pc)’+(mc*)2—KZer. (22
We rewrite Eq.(22) as
[(E+mc®)+KZe/r]?=(pc)?+(md)?, (23
and solve for pc)?:
2
(pc)?= p;‘ﬁrlr_—2 c?=E(E+2md)+ 2KrZe2
2\2
x(Erme)+ S )
- ( E 2mKZe2( E )
pr—ZmE 1+2mC2 + p 1 W
- riz[Lz—(KZeZ/c)Z]. (25)

Equation(25) can be expressed in terms of atomic units by
noting that the fine structure constartKe?/#c. Thus, the
radial dependence of the relativistic formmfis the same as

LZ

E+ -
r2

1ﬁ 1 ﬁ;d\/z KZ€e?
nr+§ _ﬂ r m p

1

:271'

dr
- V2mErP+2mKzéer—L2.

17
Equation (17) can be evaluated using E@l5), with A
=2mE, B=mKZ¢, andC=L? to obtain

! h=—L+KZe?/ m 18
nr+ E =—L+ e — E ( )
From Eq.(13), we have
1
nr+§ A+L=(n+€+1)A, (29
and we define the principal quantum numieas
n=n+{+1=n+ng+n,+1. (20

The substitution& e’= 2R a, and#2/m= 2R a3 are conve-

E
A=2mE 1+ W) (268)
B=mKZzé&| 1 E 26b)
=m +W ( )
C=[L?>—(aZh)?]. (260
The radial EBK condition becomes
1 mKZe&(1+E/mc)
N+ = |h=—\L?—(aZh)*+ .
2 (aZt) J=2mE(1+E2md)
(27)
We use Eq(13)
¢ ! \/ ¢ L) Z)?
n— —§+ +§ —(aZ)
aZ(1+E/mc)
(29)

T —2Eim@(1tE2m®)’

nient in converting to atomic units. In these units, the energy

is given by
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(E+md)

(aZ)? —112

Ty
n——§+

=mc?| 1+

2 2

—(aZ)?

{+ E
(29

Equation (29) is the relativistic equation obtained by

Sommerfeld Note that if the orbital angular momentufrin
this semiclassical expression is replaced by the {atddital
plus spin angular momentunj, the correct relativistic ex-
pression for the Dirac energy is obtained.

By taking differences between the Dirac energies for the

two values of the total angular momentujs €+ 3 and j

=¢— 3 (corresponding to the parallel and antiparallel align-

ment of the spin and orbital angular momenjurhe fine

structure separation can be specified. This calculation can
done directly, or(for students with more mathematical facil-

ity) using a closed form series expansibfor Eq. (29), the
first two terms of which are
mc[(az\? [azZ\*/ n 3
52_77(3J+-?J 14|
2

(30

3
2nr+€+§

where the principal quantum number is defined as
n=2n+{=2n,+ny+n,.

E= #i, (395

(36)

IV. CONCLUSION

Our results provide a compact introduction to the quantum
nature of matter, without the need for a knowledge of partial
differential equations, infinite series, complex variables, or
the other mathematical tools of quantum mechanics.

The introduction of the quantization of action also fits in
well with the fundamental role played by this quantity in the
principle of least action. In a recent essajaylor suggested

the use of least action methods as a more flexible and more

bDowerful teaching approach than traditional Newtonian me-
C

$hanics. It has been shofvthat Newtonian physics can be
expressed in terms of classical position probability densities
by examining the “dwell time patterns” given by the recip-
rocal speed. The use of EBK quantization provides a direct
connection between these classical position probability den-
sities and the fully quantum mechanical solution with a mini-
mum of mathematical detail.

which can be compared with the nonrelativistic expression’ Electronic address: lic@physics.utoledo.edu

by noting thatR,=mc?a?/2.
C. Isotropic harmonic oscillator
The potential of an isotropic harmonic oscillator is

1
V(r)= - mw?r?.

5 (31

Equation(31) leads to the radial EBK quantization integral

P 3€d\/2 E-m?w?r? o
nr+§ —E r meE—MmM-w°r —r—z
1 dr
=5 T\/ZmErz—mzwzr“— L2 (32
The substitutiorz=r? transforms Eq(32) to
1 11 dz
n+s|h=5o— 7\/2mEz—m2w222—L2, (33

which is of the form of Eq.(15 with A=—m?w?, B
=mE, andC=L2, and yields

1ﬁ—1 L E
AR L I

We again use Eq.13) and find

: (39
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