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Abstract
Many of the epoch-breaking papers that have been published by Einstein are remembered
today as treatises dealing with various isolated phenomena rather than as direct consequences
of a new unified world view. This paper traces the various ways in which ten papers published
by Einstein during the period 1905–1925 influenced the development of the modern atomic
paradigm, and illustrates how these discoveries can be made intuitive and pedagogically
useful.

PACS numbers: 30.00, 01.65.+g

1. Introduction

Models for atomic structure are often associated with certain
individuals, such as the ‘atoms’ of Thomson, Rutherford,
Bohr, Schrödinger and Dirac. Although it is seldom
specifically mentioned, many aspects of the development of
these models were suggested or heavily influenced by Albert
Einstein in papers that are primarily remembered for other
applications.

Many of the epoch-breaking papers of Einstein are
remembered today as anecdotal treatises dealing with isolated
phenomena rather than for the new unified world view
that they collectively contained. These papers are often
classified by superficial tag lines such as ‘Brownian motion’,
‘the photoelectric effect’, ‘special relativity’, ‘specific heats
of solids’, ‘the Planck radiation law’, ‘general relativity’,
etc. However, rather than being just a series of separate
solutions to diverse problems, these papers represented the
development of a new perspective that changed the way we
think about our physical universe.

The year 1905 was Einstein’s ‘annus mirabilis’—a date
to set beside 1543 (when Nicolas Copernicus published
De Revolutionibus Orbium Coelestium) and 1686 (when
Isaac Newton published Philosophiae Naturalis Principia
Mathematica). Between March and September of that year,
Einstein produced four papers on three different subjects, any
one of which could have assured his scientific immortality.
A word of praise must be given to Paul Drude, the then
editor of Annalen der Physik, who received and published
with dispatch a battery of manuscripts from an obscure Swiss
bureaucrat whose application to become a Privatdozent had
been rejected.

It is clear why Drude accepted these manuscripts without
hesitation. There is a striking clarity of exposition in these four
papers that makes it apparent that these were not to Einstein
a series of isolated studies of separate problems. The papers
were instead a manifestation of a new enlightenment that had
come into existence in the mind of Einstein that made these
seemingly different problems become recognizable pieces of
a puzzle that fell uniquely into place.

As an example of these interrelationships, the present
paper will trace various ways in which ten papers [1–10]
selected from Einstein’s 1905–1925 work have influenced the
development of the atomic hypothesis, or as Richard Feynman
has called it ‘the atomic fact’, which he characterized as ‘the
most important discovery ever made’. The popular literature
has an unfortunate tendency to portray Einstein’s discoveries
as counter-intuitive, implying that nothing is really quite as it
seems. Another goal of this paper is to show that the opposite
is true. Einstein has provided us with new perspectives from
which to view the world. When we perceive nature with this
enhanced vision it becomes clear that everything is exactly
as it seems, and could not be otherwise. As Einstein said,
‘the most incomprehensible thing about the world is that it
is comprehensible’. This paper will attempt to illustrate ways
in which Einstein’s discoveries regarding atomic structure can
be made intuitive, and simplify our understanding of the world
around us.

2. The existence of atoms

Already in the fourth century BC, Democritus proposed that
all matter consists of then inconceivably small particles,
which he described as ‘atoms’, which meant ‘indivisible’.
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The atomic picture was given added credence in 1662
when Robert Boyle discovered that air is compressible, and
that this compression affects the pressure in an inverse
relationship. From this, Boyle concluded that air must consist
of discrete particles separated by a void. In 1808, John Dalton
extended these studies to chemical measures of combining
proportions, which indicated that atoms differ from each
other in mass. Thus Dalton’s work elevated atomism from
a philosophical to a chemical theory. The discovery by
Joseph-Louis Gay-Lussac that all gases expand to the same
extent with a rise in temperature led Amedeo Avogadro to
hypothesize in 1811 that equal volumes of all gases contain
the same number of particles. Avagadro also indicated that
these particles may be combinations of individual atoms,
which he called ‘molecules’ (from the Latin ‘moliculus’,
meaning ‘small mass’). Unfortunately, despite the fame of
Avogadro’s name today, his suggestion received little attention
at the time and was rejected by Dalton and ignored by
Jöns Jakob Berzelius (the pre-eminent chemist of the day,
whose symbolic system became the language of chemistry).
Despite early philosophical formulations and the subsequent
experimental development of atomism, the question remained
whether atoms were real, or only a mnemonic device for
coding chemical reactions. The acceptance by the scientific
community of the existence of atoms did not occur until
Einstein’s May 1905 paper [2], the significance of which is
usually concealed under the tag line ‘Brownian motion’.

Despite the importance of the atomic nature of matter to
the fields of chemistry and physics, Einstein’s proof of their
existence occurred as an outgrowth of studies by the Scottish
botanist Robert Brown. In 1827, Brown was viewing under a
microscope a suspension of pollen grains in water and noticed
that the individual grains were moving about irregularly. He
initially thought that this might be a result of animate life
hidden within the grains, but found that the same erratic
motion occurred when the pollen grains were replaced with
ground glass or dye particles. Although he had no explanation
for the phenomenon, he reported the result, which has since
been called ‘Brownian motion’.

Brownian motion found an explanation in the kinetic
theory of gases developed in about 1860 by the Scottish
mathematician James Clerk Maxwell. Amazingly, the kinetic
theory itself owes its initial formulation not to physics
and chemistry, but to the social sciences [11]. After the
French revolution, the great mathematician Pierre-Simon
Laplace was required to adapt his work to serve the
revolutionary goals, and to educate the populace through
a series of public lectures. To this purpose, Laplace
adapted his studies of probability theory (initiated to rescue
‘Laplacian determinism’ from the measurement imprecision
that he attributed to ‘human weakness’ rather than to innate
indeterminacy) to demography and actuarial determination.
Laplace’s lectures were attended by the Belgian astronomer
Adolphe Quetelet, who was inspired by them to formulate the
study of ‘Staatswissenschaft’, the forerunner of the modern
statistical social sciences. Quetelet’s work was heralded as
a cure for societal ills, and was championed by the social
reformer Florence Nightingale. This subsequently inspired
James Clerk Maxwell, through his reading of an essay on
Quetelet’s work written by John Herschel (the astronomer),

to adopt a strategy using Laplace’s probabilistic methods as a
basis for his kinetic theory of gases. Maxwell’s formulation
of statistical mechanics marked a turning point in physics,
since (in contrast to Laplacian determinism) it presupposed
the operation of chance in nature. Thus, in this case, the ‘exact
sciences’ borrowed from the ‘social sciences’.

It should be noted that the contributions of Florence
Nightingale were of great significance. Although usually
remembered as a pioneer in nursing, she was also one of
the leading mathematicians of her time. She developed new
techniques of analysis and innovations in the collection,
tabulation, interpretation and graphical display of statistical
data. During the Crimean War, she invented the now familiar
‘polar-area diagram’ (pie-chart) to dramatize the needless
deaths caused by unsanitary conditions in military hospitals.
Although she lived to see the Einstein era (she died in 1910),
her mathematical interest can be traced to the post-revolution
lectures of Laplace (she was six years old when Laplace
died in 1827).

Although the kinetic theory of matter provided a
qualitative explanation of Brownian motion, a quantitative
formulation was still lacking. This was provided by Einstein
in his 1905 doctoral dissertation and in the May paper of
his annus mirabilis. Einstein attacked this problem using
the same probabilistic methods developed by Laplace, here
the ‘Random Walk’, which is a sequence of discrete steps,
each in a random direction. For a large object, the number
of molecules striking on all sides and from all angles is
approximately equal, so there is no overall effect. For a
smaller object, the number of molecules striking it during
a short interval can be reduced by statistical fluctuations,
and small differences in bombardment can buffet the object
about to an observable degree. The larger the size and
mass of the molecules, the larger the size of the object for
which this difference in bombardment can produce detectable
results. Using the methods of probability, Einstein was able
to compute the distribution of distances by which the pollen
grains would be expected to migrate as a function of the size of
the molecules. Theodor Svedberg at the University of Uppsala
had also suggested a molecular explanation for Brownian
motion, but it was Einstein who produced the mathematical
formulation that demonstrated its correctness.

Publication of the Brownian motion paper quickly led
to the determination of Avogadro’s number. Before Einstein,
the number of molecules in a gram molecular weight was
assumed to be constant, but had no definite quantity. By 1908,
Jean Perrin used Einstein’s paper to make the first estimate of
the number of molecules in a mole of any substance. Within
a decade, 6.02 × 1023 atoms per gram-mole was on its way to
becoming one of the most widely known of the fundamental
constants.

In the period prior to 1905, a leading proponent of
the atomic hypothesis was Ludwig Boltzmann. Boltzmann
extended Maxwell’s work in statistical mechanics to obtain
the Maxwell–Boltzmann distribution, which connected atoms
with macroscopic phenomena. Boltzmann’s atomistic ideas
were bitterly attacked by scientists such as Wilhelm Ostwald,
and this has been cited as a possible contributing cause of
the depression and mental breakdown that led to Boltzmann’s
suicide in 1906. If so, it is ironic that the means that would
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ultimately vindicate his work were already available at the
time of his death.

Eugene Wigner has recounted that a book from which he
studied that was written before 1905 stated that ‘atoms and
molecules may exist, but this is irrelevant from the point of
view of physics’. After Einstein’s analysis, it was not only
known that atoms exist, but anyone with a ruler and a stop
watch could measure their size [12]. While this paper never
captured the popular imagination, in many ways it is the one
that had the most profound effect on contemporary thought.

3. The discrete nature of the photon

Of the annus mirabilis papers, only the one of March 1905 [1]
was considered by Einstein himself to be ‘revolutionary’. This
paper is given the tag line ‘photoelectric effect’, although
that subject plays only a minor role. The primary impact
of the paper was to unequivocally establish the integrity of
the photon as a localizable particle possessing a discrete
amount of energy. Einstein began with the observation that
the entropy of a system (the ratio of energy to temperature)
varied with the volume of a closed cavity for light in the
same way as it did for an ideal gas. Since the gas entropy
relationship was deduced from the assumption that the gas
existed as discrete molecules, Einstein reasoned that light
was also emitted in discrete entities. The paper then went
on to apply this revolutionary conclusion to the Stokes rule
of photoluminescence, to the photoelectric effect and to
the ionization of gases by ultraviolet light. The historical
emphasis given to the photoelectric effect application rather
than to the new physics that Einstein proposed is therefore
misleading. It was for this discovery that Einstein was
awarded the Nobel Prize in Physics in 1921.

In placing this discovery by Einstein in the context of our
understanding of atomic structure, it is important to clarify
historical shifts in the meaning of certain words. The standard
textbook presentation of this discovery by Einstein is clouded
by multiple meanings associated with the word ‘quantum’ as
used in different contexts. It is often incorrectly asserted that
light quanta had been proposed in 1900 by Max Planck in his
formulation of blackbody emission. Planck’s formulation did
not contain any suggestion concerning the particle nature of
light, since he instead associated the denumerable discreteness
to fictitious oscillators that he assumed produced the light.
Had Planck suspected that he was counting discrete light
particles rather than discrete resonators, it would have been
more reasonable to denote them as ‘corpuscles’ instead of
‘quanta’. In 1899 J J Thomson had used the word ‘corpuscle’
(the diminutive of the Latin word ‘corpus’, or body) to
describe his discovery that the electron is a discrete particle.
Newton had used ‘corpuscule’ for light particles prior to
the development by Thomas Young of the wave model. In
contrast, Planck assumed that discrete resonators produced
quanta of energy, but the electromagnetic waves so produced
were considered to be continuously distributed over space.

Following Planck’s nomenclature, Einstein used the
words ‘Raumpunkten lokalisierten Energiequanten’ to
describe what we would now call photons. The name
‘photon’ was first suggested in 1926 by the American
chemist Gilbert N Lewis [13], as a way to differentiate

between discrete light particles and the quantum numbers
that prescribe the discrete energy levels of a bound system,
which were introduced in 1913 by Niels Bohr. It is interesting
to note that the Planck–Einstein use of the word ‘quantum’
corresponds to the modern concept of ‘second quantization’
(the quantization of the field in quantum electrodynamics),
whereas the Bohr–Sommerfeld quantization is now called
‘first quantization’ (the discrete units of action characteristic
of a bound state of an atom). Thus, these two important
concepts are introduced using a historical framework
in which ‘second quantization’ was postulated before
‘first quantization’.

The continuing discussions in modern physics textbooks
of the fictitious Planckian oscillators and the use of the word
quanta to denote photons are unfortunate. Clearly, blackbody
radiation involves continuum collisions of free electrons, and
should not be confused with transitions between the bound
states of a quantum mechanical harmonic oscillator. Similarly,
the use of the word quantum to denote a photon confuses its
usage as the unit of action that quantizes a stationary state.

One cannot leave the subject of the photoelectric effect
without mentioning the relationship between Einstein and
Phillipp Lenard, upon whose data the application to the
photoelectric effect at the end of the paper was based.
Lenard and Johannes Stark were probably the two most
vehement Nazi supporters among German scientists, and their
savage anti-Semitic attacks on Einstein’s theories were a
factor causing him to leave Germany. In an interview, Robert
Shankland [14] discussed Lenard with Einstein. Shankland
cited as a true measure of Einstein’s objectivity the fact that
he referred to Lenard’s work ‘with complete fairness and not
the slightest trace of malice or bitterness’.

4. The Einstein–Brillouin–Keller (EBK)
quantization

As mentioned earlier, the word ‘quantum’ is still often used
to describe the fact that photons are localized particles, each
possessing quantifiable values for energy and momentum.
This is not to be confused with the word ‘quantization’,
which refers to the fact that a condition for observation of a
bound system requires that its ‘action’ fulfills certain integer
relationships with Planck’s constant. The action integral is of
the form

Action ≡
∮

pi (qi ) dqi . (1)

While it is sometimes stated that the energy levels of a bound
system are quantized, it is the action that is quantized in units
of Planck’s constant, and the discrete energy levels occur only
as a secondary consequence of action quantization.

The postulation of quantized action was made in 1913 by
Niels Bohr, in association with the theoretical specification
of the discrete line spectrum of the hydrogen atom. In the
three-dimensional formulation of a central potential there are
three action integrals corresponding to the spherical polar
coordinates r , θ and φ∮

pr (r) dr;
∮

pθ (θ) dθ;
∮

pφ(φ) dφ. (2)
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Bohr assumed the unrealizably special case of an exactly
circular orbit, which allowed him to limit consideration to
the azimuthal action integral. Assuming this to be an integer
multiple of Planck’s constant

nφ h̄ = 1

2π

∮
pφ(φ) dφ, (3)

he obtained the familiar expression for the Balmer energy.
Arnold Sommerfeld and William Wilson later extended

this treatment relativistically to include elliptic orbits,
assuming the quantizations

nθ h̄ = 1

2π

∮
pθ (θ) dθ; nr h̄ = 1

2π

∮
pr (r) dr. (4)

This formulation is known as the Bohr–Sommerfeld–Wilson
(BSW) quantization. It quickly leads to results that conflict
with experiment, and it is routinely dismissed in most modern
physics textbooks. However, the origin of these errors is not
in the general approach, but in a simple mathematical mistake
made in its application. If correctly formulated, this action
quantization can be very useful and provides many valuable
results.

While the azimuthal quantization made by Bohr is proper,
the zenith and radial quantizations are incorrect, as was shown
by Einstein in 1917 [9]. In this paper, Einstein pointed out
that the contour integral for the r and θ coordinates do
not involve rotations, but rather librations, which oscillate
between two turning points (caustics). In such cases the
integral involves a contour over two Riemannian sheets, which
leads to a phase jump at each turning point. The problem
was subsequently studied by Léon Brillouin, Joseph B Keller
and Viktor Pavlovich Maslov, and the quantization can be
correctly stated as [16]

(ni + (µi/4))h̄ = 1

2π

∮
pi (qi ) dqi . (5)

Here, µ is the Maslov index, which corresponds to the number
of turning points. Thus µ= 0 for rotations, µ= 1 for motions
with a single turning point (such as field emission from a cold
cathode or the tip of a scanning tunneling microscope), µ= 2
for librations between two turning points and µ= 4 for an
infinite square well (which has two turning points and two
reflections).

This formalism is known as the EBK quantization. It
yields correct values for most of the standard problems of
quantum mechanics, and has advantages over fully quantum
mechanical treatments in a number of applications. The
procedure is not only applicable to atomic physics, but is
also the basis for the computation of the RKR (for Ragnar
Rydberg, Oskar Klein and Albert Lloyd George Rees) method
for computing the Franck–Condon factors in molecular
physics.

For spherically symmetric potentials, the angular action
integrals can be performed. In terms of the modern
quantum mechanical notation m� ≡ ±nφ and �≡ nθ + nφ ,
these quantizations yield, for the orbital angular momentum
L and its z-projection Lz ,

L = (�+ (1/2))h̄; Lz = m�h̄. (6)

This is in agreement with the modern quantum mechanical
result for Lz , and L2 = (�2 + �+ (1/4))h̄2 approaches the
quantum mechanical result �(�+ 1)h̄2 in the correspondence
limit. For the Coulomb and isotropic harmonic oscillator
potentials, the EBK radial quantization yields the same energy
levels as modern quantum mechanical calculations.

In this little-known paper [9, 17], Einstein corrected an
error in the formulation of the BSW quantization, generalized
the method to problems with several degrees of freedom that
are not separable and also addressed a profound question
regarding classical and quantum chaos. In 1887 the King
of Sweden had sponsored as a contest a challenge to
show rigorously that the solar system is stable. The French
mathematician, astronomer and physicist Henri Poincaré
submitted an entry, which at first appeared to have succeeded,
but Poincaré subsequently discovered an error. Poincaré’s
correction of that error is generally regarded as the birth of
chaos theory. In Einstein’s 1917 paper, he pointed out that the
method (later called EBK) fails if there do not exist a number
of integrals of motion equal to the number of degrees of
freedom, that is, unless the system is integrable. He suggested
that the non-integrable case is typical of classical dynamics,
but indicated that the quantum situation was an open question.
While this aspect of the paper was ignored until the 1960s, the
problem noted by Einstein is fundamental and has never fully
been overcome.

It is unfortunate that this very important and conceptually
fertile paper by Einstein has been almost completely
overlooked by textbook writers (although not by researchers).

5. Relativity and fine structure

The titular subject of the June paper of Einstein’s
annus mirabilis is seldom mentioned in discussions of its
implications. The title of the paper is ‘On the electrodynamics
of moving bodies’ [3] and its first sentence states ‘It is known
that Maxwell’s electrodynamics—as usually understood at
the present time—when applied to moving bodies, leads
to asymmetries which do not appear to be inherent in the
phenomena’. While this paper is usually referred to by the
tag line ‘special relativity’, its intent was not to describe
rocket ships traveling at velocities near the speed of light,
but rather to describe magnetic fields produced by currents
corresponding to electron drift speeds of tens of millimeters
per second or less [15]. Thus the results of this paper should
appear in every elementary physics textbook between the
chapters on Coulomb’s law and the Biot–Savart law, but
instead it is deferred to the end of the book or saved for a
subsequent advanced course for physics majors.

The beauty and simplicity of the relativistic formulation
can be seen from the following pedagogic example [16].
Consider a copper wire 1 mm in diameter through which
a current of 1 A passes. Assuming one conduction electron
per copper atom, this current corresponds to a drift speed of
1

10 mm s−1.
One of the results of special relativity is the fact that

if two extended objects move relative to each other, each
underestimates the length of the other along the direction of
motion. Thus, to an observer who is stationary relative to the
wire, the negative electron charge will appear slightly denser.
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Figure 1. Model for a current.

This is a very small effect, but it is greatly enhanced as seen by
a charge that moves with a significantly larger speed relative
to the wire. A model for such a current is shown in figure 1.

If a segment of the wire of length L0 contains a positive
charge Q and a free-electron charge −Q with a drift speed u,
and the test charge q has a speed ±V (either parallel or
antiparallel to the electron drift) at a distance r from the center
of the wire, the Coulomb force on the test charge is given by

F = 2K q

r

[
Q

L0

√
1 − (V 2/c2)

− Q

L0

√
1 − ((±V − u)2/c2)

]
. (7)

Here, we have included the apparent relativistic contraction of
the two line charges as seen by the moving test charge. This
can be binomial expanded to yield

F ≈ 2K q

r

Q

L0

[(
1 +

V 2

2c2
+ · · ·

)

−
(

1 +
V 2 ∓ 2V u + u2

2c2
+ · · ·

)]
. (8)

To first order in u/c this becomes

F ≈ ±2K qV

rc2

(
− Qu

L0

)
. (9)

Although u is small, Q/L0 is large, and their product can be
identified as the current in the wire. Thus we can define

I ≡ −Qu/L0; B ≡ 2(K/c2)I/r; F = ±qV B, (10)

where the plus sign denotes repulsion if the test charge moves
in the same direction as the electron drift, and the minus
sign denotes attraction if the test charge moves opposite to
the electron drift. This simple model demonstrates that the
Biot–Savart law is a consequence of Coulomb’s law and
relativity, and not a separate experimental fact.

While this paper is probably the one considered the most
radical by the general public, the basic concepts of relativity
had been in the scientific air for a very long time. Already
in 1887, Woldemar Voigt [18] had studied transformations
of the electromagnetic wave equation between space-time
coordinate systems for which the wave speed is invariant,
and obtained the equations that are today called the Lorentz
transformations. Thus Voigt conceived the idea of a universal
value for the speed of light and demonstrated that the Doppler
shift in frequency is incompatible with Newtonian absolute

time. In 1895 the transformations were rederived in another
context by George FitzGerald and Hendrik Antoon Lorentz.
Although the Lorentz and Voigt corresponded frequently, the
1887 paper by Voigt had escaped the attention of Lorentz,
who belatedly cited the work of Voigt in the 1908 edition
of his book The Theory of Electrons. Prior to Einstein’s
presentation, Henri Poincaré presented a lecture on the
‘Principle of Relativity’ at the 1904 St. Louis World’s Fair
(the scene depicted in the 1940s Hollywood musical ‘Meet
Me in St. Louis’). However, the clarity, thoroughness and
transparency of Einstein’s presentation brought all of the
various aspects of relativity together in a manner that certainly
justifies his priority.

There are many features of relativity that influenced the
development of atomic theory. One involves the relativistic
kinetic energy T , which can be written in terms of the mass m
and momentum p as

T =
√
(mc2)2 + (pc)2 − mc2

∼= mc2

[
1 +

1

2

( p

mc

)2
− 1

8

( p

mc

)4
+ · · ·

]
− mc2. (11)

In terms of the nonrelativistic kinetic energy T0 ≡ p2/2m, this
becomes

T ∼= T0 − (
T 2

0 /2mc2) + · · · , (12)

and the correction �E to the nonrelativistic energy is

〈�E〉 = 〈T 〉− 〈T0〉 = 〈T 2
0 〉/2mc2. (13)

(The angular brackets indicate orbital averages.) For a
Coulomb potential, the total nonrelativistic energy E0 = T0 −
(κ/r) (here and henceforth κ ≡ e2/4πε0), so

〈T 2
0 〉 = 〈(E0 + (κ/r))2〉 = E2

0 + 2E0〈κ/r〉 + 〈κ2/r2〉 (14)

and the virial theorem yields E0 = −〈κ/r〉/2; hence

〈�E〉 = − κ2

2mc2

[
〈r−2〉 − 3

4
〈r−1〉2

]
. (15)

In terms of the semimajor axis a and semiminor axis b of the
elliptic orbit, this is

〈�E〉 = − κ2

2mc2

[
1

ab
− 3

4a2

]
, (16)

where a0 is the Bohr radius. This is the expression for the
energy correction to the advance of the perihelion of the
planet Mercury as predicted by Einstein on the basis of special
relativity (7.2 arcseconds century−1). The EBK quantization
for the hydrogen atom yields the values

a = a0n2; b = a0n(�+ (1/2)). (17)

Inserting these values yields the correct quantum mechanical
expression for the relativistic momentum fine structure
correction

〈�E〉 = − Rα2

n3

[
1(

�+ 1
2

) − 3

4n

]
, (18)

where R = κ/2a0 and α =
√
κ/mc2a0 are the Rydberg and

fine structure constants.

5



Phys. Scr. 79 (2009) 058101 L J Curtis

In most modern physics textbooks, the treatment of
Einstein’s calculation of the advance of the perihelion of
Mercury and the calculation of the fine structure of the
hydrogen atom are treated in very different ways in widely
separated chapters. Combining the two in this manner can be
both conceptually and calculationally effective.

In addition to this fine structure correction for the
relativistic momentum of the electron, there is also a second
relativistic correction caused by magnetic interactions. This is
due to the interaction between the intrinsic magnetic moment
of the electron and the magnetic field set up by the relative
motion of the nucleus as seen by the orbiting electron. The
magnetic field can be written as

B = K

c2

e(r × v)
r3

. (19)

This circulation of charge e(r × v) can be written in terms
of the circulation of mass, which is the orbital angular
momentum

L = m(r × v). (20)

The anomalous magnetic moment of the electron is

µs = −ge
e

2m
S, (21)

where ge ≈ 2 is the g-factor of the electron. These
equations can be used to compute the interaction energy
�E = −〈µs · B〉. However, it is necessary to transform the
result into the normal frame in which the nucleus is at rest,
and this involves an additional relativistic correction called the
‘Thomas precession’. This causes the electron g-factor to be
replaced by ge → ge − 1 ≈ 1, and yields the result

�E = κ

2(mc)2

〈
L · S
r3

〉
= κ

2(mc)2
〈L · S〉

b3
, (22)

where b is the semiminor axis of the ellipse.
This correction also has a connection to Einstein’s general

relativistic formulation of the advance of the perihelion of
the planet Mercury. When general relativity is applied to
the gravitational problem, the Schwarzschild solution of the
Einstein field equations assumes the form [19]

〈�E〉 = κL2

(mc)2
〈r−3〉. (23)

So, just as in the case of the atomic spin–orbit interaction,
there is here another correction beyond the relativistic kinetic
energy of special relativity that depends on the inverse cube
of the radius vector. In the case of the advance of the
perihelion of Mercury, use of the general relativity calculation
corrects the value obtained from special relativity by a
factor of six, which exactly matches the observed result
43 arcseconds century−1. Einstein first made this calculation
in November 1915 and in the following January he is said to
have written to Paul Ehrenfest saying, ‘For a few days I was
beside myself with joyous excitement’.

Using the EBK quantization for the value of b, the
magnetic contribution to the fine structure of hydrogen is

〈�E〉 = Rα2 〈L · S〉
n3(�+ (1/2))3

. (24)

The corresponding expression obtained by applying
perturbation theory to the Schrödinger equation is

〈�E〉 = Rα2 〈L · S〉
n3�(�+ (1/2))(�+ 1)

, (25)

which illustrates another advantage of the EBK quantization.
The perturbation solution obtained using the nonrelativistic
Schrödinger wave functions is indeterminant for s-states
(�= 0), since these wave functions sample r = 0 where the
Coulomb potential diverges. This artifact of the nonrelativistic
calculation requires an additional correction called the Darwin
term. This is not a problem in the EBK formulation because,
owing to the Maslov index, an s-state has a small but finite
perihelion.

The origin of this problem extends to the Dirac equation
and lies in choices in evaluating the nonrelativistic limit.
Different operators occur in the Dirac Hamiltonian (which
includes both the positive and negative energy states) and the
nonrelativistic limit of the Pauli Hamiltonian (with its position
and spin operators). The proper transformation of the Dirac
Hamiltonian to the Pauli Hamiltonian in the presence of an
electromagnetic field was obtained in 1950 by Leslie L Foldy
and Siegfried A Wouthuysen [20]. In this transformation, a
point particle that moves smoothly in the Dirac space-time
coordinates acquires a jittery motion (or ‘Zitterbewegung’)
in the Pauli representation. Thus it dances about in a region
of the order of its Compton wavelength under the influence
of its absorption and re-emission of virtual photons from
the electromagnetic field. Because of this effect the behavior
of a point electron exhibits some properties characteristic
of a particle of finite extension, which explains the angular
momentum and magnetic moment exhibited by the electron.

One of the important aspects of the impact of relativity
on atomic physics involves symmetry under time reversal.
It is interesting to note that the development of the cinema
was proceeding at the same time as the development of
relativity. In Paris in 1895, Auguste and Louis Lumière
made the first public screening of a moving picture. Their
Cinematograph not only produced realistic moving images,
but during the rewind process it provided the first visualization
of time-reversed motion. It is therefore not surprising that the
general public was intrigued by the fundamental significance
that relativity gives to time reversal.

It is interesting to note that, despite Einstein’s formulation
of special relativity in 1905, in 1925 the major advance
in atomic theory involved the nonrelativistic Schrödinger
equation. Dirac has recounted in [21] a story told to him by
Schrödinger regarding his development of the wave equation.
In trying to generalize the ideas of DeBroglie regarding
waves associated with particles, Schrödinger considered a
mathematical operator constructed from the relativistic energy
relationships governing the Coulomb potential. He began with
what Dirac called ‘Schrödinger’s first wave equation’

(E + mc2 + (κ/r))2ψ = [
(mc2)2 + (pc)2

]
ψ. (26)

Schrödinger applied this equation to the behavior of the
electron in the hydrogen atom, but obtained results that
disagreed with experiment. This disappointment caused him
to abandon the work for several months. However, he
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later returned to this study and rewrote the equation in an
approximate way, neglecting the refinements required by
relativity. By taking the square root of the operators on
both sides of the equation above, and expanding the right
side in powers of (p/mc)2, he obtained what Dirac called
‘Schrödinger’s second wave equation’

(E + (κ/r))ψ = (p2/2m)ψ. (27)

To his surprise, Schrödinger found that the results obtained
using this rough approximation were in agreement with
available observations.

Both equations fail to account for the intrinsic spin of
the electron, but they omit this crucial element in different
ways. ‘Schrödinger’s first equation’ is now known as the
Klein–Gordon equation, and describes a spinless particle.
‘Schrödinger’s second equation’ is the normal Schrödinger
equation, and represents a factorization of the spatial and spin
portions of the wave function. The fully relativistic treatment
is given by the Dirac equation, in which Schrödinger’s first
equation is written as a complex factorization rather than a
square root

(E + mc2 + (κ/r))ψ = (pc + imc2)ψ. (28)

The solution to this equation is not a scalar wave function but
rather a four-component vector. Like the Foldy–Wouthuysen
transformation, Schrödinger’s first and second equations
represent different nonrelativistic limits of the relativistic
equation: the first retains Lorentz covariance but loses electron
spin; the second forfeits Lorentz covariance but retains the
possibility of including electron spin as a multiplicative Pauli
correction.

The fact that the relativistic Dirac equation produced
four solutions led to many new discoveries. The solutions
could be classified as the two spin states of the electron,
and a time-reversed counterpart that was ultimately identified
as the positron, the first known antiparticle. The electron
and the positron were subsequently connected to the photon
in a most useful way through the development of quantum
electrodynamics.

In his acceptance speech upon being awarded the Nobel
Prize [22], Richard Feynman recalled a picture suggested by
John Wheeler, in which there is only one single electron
in the universe, which doubles back and forth between the
past and future by moving forward and backward in time.
This is based on the fact that when two energetic photons
collide, an electron–positron pair creation occurs, and when
an electron–positron collision occurs they annihilate to form
two energetic photons. Feynman and Wheeler pictorially
represented these processes as an electron encountering an
energetic photon, whereupon both reverse their directions
in time (a photon is its own antiparticle). The electron
(in its positron disguise) then proceeds backward in time
until it encounters another energetic photon, whereupon both
reverse their time directions again. This process continues
ad infinitum, and each transit through the ‘here-now’ is
interpreted as an electron or positron. A diagram of this
process is given in figure 2

While this picture ignores the apparent disparity between
the numbers of electrons and positrons in the known universe,

Figure 2. The universal electron.

it illustrates an essential feature of quantum electrodynamics:
all of the electrons in the universe are coupled to the
electromagnetic field of virtual photons, and thereby all
are coupled to each other. Thus, rather than considering the
electron and photon as two different particles, it becomes
useful to consider the ‘dressed electron’, which, by virtue of
its charge, is inseparable from its virtual photon field.

6. Emission and absorption

Einstein’s 1917 paper on ‘The quantum theory of
radiation’ [8] was the first formulation of a number of
different physical processes. It was the first definition
of the Einstein A and B coefficients that govern spontaneous
emission, stimulated emission and absorption. It was the first
consideration of stimulated emission, which provided the
basis for the maser and laser long before their development.
It was the first demonstration that the Planck continuum
radiation law can be deduced from the Bohr theory of the
atom and the Boltzmann statistical law for an ensemble in
thermal equilibrium.

However, a major portion of the paper was devoted to
a discussion of the fact that photons must obey not only
conservation of energy, but also conservation of momentum.
Einstein reasoned that, while the emission of radiation can be
considered as consisting of spherical waves, the absorption of
radiation is a ‘fully directed event’ involving a plane wave.
Thus, while emission could be treated through conservation
of energy, Einstein showed that absorption required the
consideration of the directed momentum of the photon and
the recoil of the absorbing atom. Although physics textbooks
cite the 1923 measurement by Arthur Holly Compton as
the experimental proof that photons conserve momentum,
Einstein had already confirmed this using blackbody radiation
in 1917.

Einstein’s introduction of the A and B coefficients was
conceptual, assuming (in analogy to nuclear decay processes)
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Figure 3. Emission and absorption.

that the various rates were proportional to the instantaneous
number of atoms multiplied by a constant coefficient. Since
this was done before the relationships of these coefficients to
the electric dipole matrix element were formulated, Einstein
had to deduce the ratio of A to B empirically, by forcing it
to conform to the known quantities that occur in the Planck
Law. Since these relationships are now known, it is possible
to generalize Einstein’s formulation, obtaining the Planck
Law from first principles without recourse to the empirical
specification of any factors.

Einstein’s A coefficient is still in use, and is the
standard spontaneous transition probability rate Ai j . The
use of the B coefficient has largely been replaced by the
oscillator strength fji , which is a dimensionless quantity
that relates the absorption of radiation by a classical simple
harmonic oscillator to that of the corresponding quantum
mechanical system. The Einstein B coefficient differs from
the A coefficient in that it involves the energy/time rather than
photons/time.

A diagram indicating two radiation-coupled levels is
shown in figure 3. In terms of the A and f quantities, the
population equation for an arbitrary pair of levels a and b with
populations Na and Nb (where Ea > Eb) in the presence of a
photon flux density ρ(ω) is

−dNa

dt
= dNb

dt
= Na Aab +

πκ

m
[Na fab + Nb fba] ρ(ω). (29)

where the three contributions on the right side are spontaneous
emission, stimulated emission and absorption. At equilibrium
−dNa/dt = dNb/dt = 0, and this equation can be solved for
ρ(ω)

ρ(ω)= − m Na Aab

πκ(Nb fba + Na fab)
. (30)

The populations can be eliminated by the use of the
Boltzmann distribution

Nb

Na
= gb

ga
exp[−(Eb − Ea)/kT ] = gb

ga
e−h̄ω/kT . (31)

The relationship between absorption and stimulated emission
oscillator strengths involves a sign and the degeneracies
gb fba = −ga fab. This yields

ρ(ω)= m

πκ

ga Aab

gb fba

1

(eh̄ω/kT − 1)
. (32)

The relationship between emission and absorption is

ga Aab = 2κω2

mc3
gb fba (33)

from which the distribution in photon space is deduced

ρ(ω)= 2ω2

πc3

1

(eh̄ω/kT − 1)
. (34)

To connect this to the Planck distribution law, which was
formulated as an energy density rather than a photon density,
we multiply by h̄ω

h̄ω ρ(ω)= 2h̄ω3

πc3

1

(eh̄ω/kT − 1)
. (35)

It should be emphasized that, while this description treats
two levels a and b, there is no requirement that specifies
whether these are bound or continuum levels. While Einstein
used this formalism to describe the Planck law for continuum
radiation emitted by free electrons in a plasma or in a metal,
it is still used today to describe transitions between stationary
states of bound systems. In 1924, Bose and Einstein developed
a more direct method of deducing the Planck distribution
using quantum statistics, but this 1917 formulation still
remains the method used for describing bound state emission
and absorption.

It is interesting that Einstein formulated the concept
of spontaneous emission not as a radiation rate but as a
rate of change of probability between stationary states. The
fact that Einstein here embraced a probabilistic formulation
indicates that there was a greater degree of subtlety than is
normally accorded to his later objections (Gott würfelt nicht!)
to this aspect of quantum mechanics and the Copenhagen
interpretation.

7. Quantum statistics

Although the 1917 paper [8] by Einstein had developed
new concepts such as spontaneous and stimulated emission,
absorption, and conservation of vector momentum by photons
to bear on the derivation of the Planck radiation law, a new and
much simpler method for obtaining this result was revealed to
him in 1924.

In that year, Einstein received a manuscript in English
from a young Indian physicist, Satyendra Nath Bose [23],
which set forth a theory in which radiation was treated as
a photon gas. Such approaches had been tried before using
standard Maxwell–Boltzmann statistics, but they yielded
the Wien rather than the Planck distribution. However, by
changing the statistical method by which he counted the states
of the gas to describe indistinguishable particles, Bose had
obtained a new distribution function that produced the correct
Planck distribution.

Daniel Kleppner [24] has imagined that this could
have been a ‘forehead slapping moment’ in which Einstein
might have exclaimed ‘Why didn’t I think of that?’ Einstein
translated Bose’s paper into German and immediately
forwarded it to Zeitschrift für Physik with a recommendation
for publication. Einstein then set about to apply Bose’s
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distribution (now known as the Bose–Einstein statistics) to a
gas of material particles.

While Einstein was working on this project, he received
another manuscript, this one a doctoral dissertation written
in Paris by Louis de Broglie. In two papers published in
1909 [5, 6], Einstein had shown that statistical fluctuations in
thermal radiation fields display both particlelike and wavelike
behavior, which was the first indication of what came to be
called complementarity. The thesis of de Broglie proposed
the concept of ‘pilot waves’, asserting that every material
particle has a wave associated with it, with the frequency and
reciprocal wavelength related to the energy and momentum
through Planck’s constant. Although the assertion was then
lacking experimental evidence, Einstein is reported to have
said that de Broglie had ‘lifted a corner of a great veil’.

In 1924 and 1925 Einstein calculated [10] the fluctuations
in a Bose–Einstein gas of material particles, and showed that
they exhibited the same structure as the fluctuations in the
blackbody spectrum. Einstein saw this as a confirmation of
de Broglie’s matter waves, and suggested other experimental
methods to detect them, one of which was the suggestion of
the possibility of the Bose–Einstein condensation.

The formulation of the Bose–Einstein and Fermi–Dirac
statistics that govern indistinguishable particles, together with
the connection between spin and statistics, provides insights
into the statements concerning ‘wave–particle duality’ that
pervade elementary physics textbooks. With a knowledge of
quantum statistics, duality is little more than a misleading
historical artifact, and discussion of it could be profitably
replaced by a simple qualitative discussion of the connection
between spin and statistics. This can be done by noting
that all fundamental particles possess localized energy
and momentum as well as intrinsic periodicities and by
considering the following facts.

Entities that possess intrinsic spins that are integer
multiples of h̄ have symmetric wave functions and obey
Bose–Einstein statistics. This permits ensembles of such
entities to exist in a common state with coherent phases, and
their members do the same thing at the same time. Thus their
macroscopic behavior mimics their microscopic behavior,
masking their individualities and revealing their periodic
coherences. Early workers used words such as ‘fields’ and
‘waves’ to describe what we now call ‘bosons’.

Entities that possess intrinsic spins that are
half-odd-integer multiples of h̄ have antisymmetric wave
functions and obey Fermi–Dirac statistics. This precludes
ensembles of such particles from doing the same thing at
the same time. Thus they have incoherent phases and their
macroscopic behavior differentiates their individualities and
averages out their periodicities. Early workers used words
such as ‘particles’ to describe what we now call ‘fermions’.

The examples cited in elementary textbooks as illustrative
of one or the other of these ‘duality’ aspects (ocean waves,
sound waves, billiard balls, human beings, etc) are themselves
constructed granularly from atoms, but simultaneously
possess (both individually and collectively) basic periodic
frequency modes. Thus the dichotomy of duality may be more
a conceptual impediment than a pedagogical tool, since it
introduces a counter-experiential distinction for the express
purpose of its subsequent refutation.

Another useful conceptual model provided by quantum
statistics involves the ‘dressed electron’. Electrons and
positrons possess spin 1

2 and are thus fermions, obeying
Fermi–Dirac statistics. However, quantum electrodynamics
accounts for the electrical interactions among these fermions
through the exchange of virtual photons, which are the spin 1
‘gauge bosons’ that mediate the interaction. Thus there is
an inseparable relationship between the electrons and the
photons—an electron with no virtual photon accompaniment
would have no charge, and would behave like a neutrino.
When the electron (which obeys Fermi–Dirac statistics) is
taken together with its absorbed and emitted virtual photons
(which obey Bose–Einstein statistics), the two together obey
Maxwell–Boltzmann statistics.

A simple analogy can be obtained by considering coin
flips. If two coins are flipped, each can result in a heads (H)
or tails (T) with equal likelihood. Thus the possible outcomes
are

HH HT TH TT (36)

and there is a 25% chance of either two heads or two tails,
and a 50% chance of one heads and one tails. However, if
these are indistinguishable ‘quantum coins’ (i.e., they have
no pre-existence, and only come into being when the wave
function collapses in the measurement process), then it is not
possible to discriminate between HT and TH. In this case the
possible outcomes are

HH (HT + TH)/
√

2 TT (37)

and there is a 33% chance of any of the three outcomes of two
heads, two tails, or one heads and one tails. This symmetric
case is an analogue of the Bose–Einstein distribution. If
there is an exclusion principle that precludes both coins from
having the same heads or tails property, then the only possible
outcome for this simple case is

(HT − TH)/
√

2, (38)

which is an antisymmetric analog to Fermi–Dirac statistics.
If the Bose–Einstein and Fermi–Dirac distributions are
incoherently quantum mechanically averaged (squaring the
component of each distribution first and then adding), it
yields the same result as the Maxwell–Boltzmann distribution.
Similar examples can be constructed with multisided coins
(like dice), with the same property that the corresponding
average of the Bose–Einstein and the Fermi–Dirac cases
yields a Maxwell–Boltzmann analogue.

This quantum coin example has a counterpart in atomic
physics in the specification of the triplet and singlet
states of a two-valence-electron atom. The spin-triplet
obeys Bose–Einstein statistics and the spin-singlet obeys
Fermi–Dirac statistics. Since the total wave function of the
atom must be antisymmetric under interchange of electron
labels, the spatial portion of the wave function must obey
the opposite statistics to that of the spin portion. Thus the
spatial behavior of the triplet is that of a fermion and the
spatial behavior of the singlet is that of a boson. This leads
to a tendency for electrons in the triplet to be more spatially
separated than those of the singlet; hence the triplet is usually
more tightly bound than the singlet.
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It can be a useful conceptual insight into the nature
of our physical reality to note that the Maxwell–Boltzmann
macroscopic statistical behavior that we observe in daily life
subdivides on a microscopic level into Bose–Einstein and
Fermi–Dirac components.

8. Conclusion

This paper has attempted to place the contributions of Albert
Einstein to atomic physics in perspective by considering
both the historical context at the time of his work and
the developments that have occurred since that time. One
thread that is interwoven through the papers that have been
considered is the myriad of properties of the photon. As
Einstein said, ‘For the rest of my life I want to reflect on what
light is.’

A similar treatise could be written on almost any field
of current physics research. However, the impact of Albert
Einstein goes far beyond physics. He captured the popular
imagination and was truly the scientist of the people. My
father was born in 1905, just a few days after the publication
of the fourth paper of the annus mirabilis. Although a
pharmacist by profession, he was fascinated by the work
of Einstein, and passed that sense of curiosity and wonder
on to me.
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