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Abstract. A method for prescribing the effective quantum numbers for which an oscillator
strength in a Rydberg series will vanish due to cancellation effects is presented and applied
to several transitions in the Cu I isoelectronic sequence.

Occasionally a specific oscillator strength in a Rydberg series is anomalously small
compared with other members of the same Rydberg series and with the corresponding
transition in other members of the same isoelectronic sequence. This occurs whenever
the radial transition integral undergoes a change of sign along an isoelectronic
sequence near values of the effective quantum numbers which correspond to a physi-
cal ion. The conditions for cancellation are very sensitive to the effective quantum
numbers of the participating levels, and the anomaly is usually very sharp, restricted
to a single Rydberg transition and a single member of the isoelectronic sequence.
An example of such cancellation effects is shown in figure 1, for the 4p 2P3,,—5d *Ds),
transition in the Cu I isoelectronic sequence. Here the oscillator strength (computed
using the numerical Coulomb approximation by A Lindgard 1978, private communi-
cation) for Kr v is diminished by more than four orders of magnitude from those
of neighbouring ions, Br vii and Rb 1x. This oscillator strength cancellation is not
a unique phenomenon, but, on the contrary, has many possibilities for occurrence
which can be systematically examined by the methods to be described below.

A knowledge of the occurrence of anomalously small oscillator strengths can
be valuable for a number of reasons. It can be utilised in term analysis studies,
since it explains the absence of lines which would otherwise be expected to be present
(e.g., the 3s—4p resonance lines in Mg 11 are anomalously weak compared to other
members of the Na 1 isoelectronic sequence because of such a cancellation). Anoma-
lously low oscillator strengths in low lying resonance transitions can be useful for
astrophysical abundance determinations, since they are unsaturated in absorption
spectra and thus permit lineshape studies. Knowledge that a normally strong transi-
tion becomes insignificant for a specific ion is also valuable in atomic lifetime
measurements which incorporate cascade information into the analysis. The method
described here utilises effective quantum numbers, and thus permits the use of quan-
tum defect extrapolations to make predictions in the nature of a simple yes or no
statement about the disappearance of the oscillator strength. This method also
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Figare 1. Absorption oscillator strength versus reciprocal nuclear charge for the
4p *P;;,-5d 2Dy, transition in the Cu 1 isoelectronic sequence.

provides a quick test of the presence of this cancellation for any transition for which
effective quantum numbers are known.

Rydberg series are common to the spectra of many atoms. Within such a series
the term values E,, of a level of principal and angular momentum quantum numbers
n and [ can be specified by an extended Ritz formula (Edlén 1964) giving the quantum
defects d,; as a power series in the reduced energy e, = E,/R(* = —1/n¥? (here
R is the Rydberg energy, ( the core charge and n} = n — §,, is the effective principal
quantum number). When §,, varies slowly with ¢,, the one-electron model and hence
the quantum defect method are valid approximations. Using the quantum defect
method, Burgess and Seaton (1960) have derived a simple analytic approximation
for the partial cross section for photoionisation. Their results are equivalent to the
well known tables of Bates and Damgaard (1949), but have some advantages in
that they combine slowly varying tabulated parameters with simple analytic functions.

It is easy to apply the photoionisation formula of Burgess and Seaton (1960)
to the discrete spectrum, using the concept of an oscillator strength distribution in
energy which is analytic across the ionisation limit (Fano and Cooper 1968, Seaton
1958). The result is

1> fuwre = A cos’nlnf — nff — y) )

where f, . is the absorption oscillator strength for a lower level nl and an upper
level n'l', and A and y are slowly varying functions of the effective quantum numbers
for given I and I'. The functions A and y can be evaluated numerically from tables
given by Burgess and Seaton (1960). This approach has been used by Gruzdev to
compute a number of oscillator strengths (Gruzdev 1966, 1967a,b, Gruzdev and
Prokofev 1966); Gruzdev (1967a) contains a more explicit version of our equation (1).

The cancellation effects in the radial transition integral which we are studying
manifest themselves directly in equation (1) through the zeros of the cosine, which
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Figure 2. Plot of the effective quantum numbers along the Cu 1 isoelectronic sequence
for various Rydberg transitions, along with the lines of vanishing oscillator strength pre-
dicted by equation (1).

occur whenever nff — nf — y = k + %, where k is an arbitrary integer. Using expres-
sions given by Burgess and Seaton (1960) for y, the conditions for cancellation for
nf > | + 1 become

= nf 4k + 3+ ap + by/nf + cp/nf? — oy /P nF — 1) — Bu/nEnE? — 1) (2)

where the quantities ay, by, ¢, oy and B are simple numerical coefficients, which
are given in table 3 of the paper by Burgess and Seaton (1960). (For smaller nf
tables 6-8 may be used instead for greater precision.) The formal solution of
equation (2) requires extraction of the roots of polynomial equations of up to sixth
order. However, for values of k such that nf and n} are not too close together (in
which case the oscillator strengths and transition probabilities become small due
to the wavelength dependence), the appropriate root can be obtained by choosing a
value for nf and iterating equation (2) for successively better approximations for nj.

With this single physical root, equation (2) represents a family of curves (approach-
ing parallel straight lines with a 45° slope for large quantum numbers) on a plot
of nft versus nf. It should be noted that the formulation of Burgess and Seaton
is approximate in that it is not symmetric under interchange of upper and lower
level quantum numbers, so values of n¥ < nj* should be obtained by interchanging
I 'and I in equation (2), and not by allowing k to take on negative values. A confron-
tation with experimental results can be obtained by plotting the corresponding n}
and nf values for given Rydberg transitions along an isoelectronic sequence, and
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looking for coincidences or near coincidences between the experimental points and
the lines of nodes predicted by equation (2).

A plot of nf versus n¥ for a number of levels in the Cu 1 sequence is given
in figure 2, along with the nodes predicted by equation (2). The circles represent,
from left to right, Cu 1 to Mo x1v for all plots except np-6d, which extend only
from Cu 1to Se vi. Existing term value data have been supplemented by Ritz formula
quantum defect extrapolations for the 6d and 7p levels. Notice that there is a coinci-
dence with a node line for the 4p-5d transition at Kr vmi, corresponding to the
cancellation effects depicted in figure 1, as well as another coincidence for the 4d-6p
transition at Zn 1. Calculations using the numerical Coulomb approximation
(A Lindgard 1978, private communication) indicate that the oscillator strength for
the 4d *Ds;,~6p *P;, transition for Zn 1 is diminished by more than three orders
of magnitude from that in Ga mi, and by over four orders of magnitude from that
in Cu L.

Thus a comparison of lines of vanishing oscillator strength given by equation (2)
can be made with the effective quantum numbers of any physical state, determined
either directly experimentally, or by Ritz formula extrapolations. This provides a
method for testing any specific transition for cancellation effects, or for conducting
a systematic search for systems which exhibit these cancellation effects.

We are indebted to Dr Anders Lingard for performing a number of numerical Cou-
lomb approximation calculations especially for this purpose and one of us (DGE)
is grateful to NORDITA for financial support.
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