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Convolution of a time-dependent driven excitation into the decay curve
of an arbitrarily cascaded and blended level
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An analysis is presented of the instantaneous emission rate from an atomic level that is populated by
arbitrary conditions of both collisional excitation and cascade repopulation. The general solution to the rate
equations is obtained in terms of transition probabilities, excitation cross sections, and a simple integral
operator, and applications are given for the specific examples of impulsive, stepwise, rectangular, gaussian,

and modulated excitation conditions.

Index Headings: Source; Spectra.

Most techniques for direct measurement of atomic
(or nuclear) mean lives involve excitation of the system
from a stable state by an external stimulus Q(#), and
observation of some quantity indicative of the instanta-
neous population NV, () of an excited level z. In some
cases, such as beam—foil and pulsed-beam-gas excita-
tion, Q(f) undergoes a sharp cutoff, after which the
free decay can be observed. In other cases, such as the
modulated-beam phase-shift technique and the stepwise
approach to equilibrium, observations are made
simultaneous to the excitation process. In either case,
the mean-life analysis must include all effects of cascade
repopulation of the level. We have shown earlier that,
for the free decay, N,(#) can be decomposed into a
sum of terms, grouped according to the number of
steps involved in the various contributing cascade
processes, which can be generated by use of a convenient
mnemonic.! However, in studies of driven decay
processes, cascade effects have generally been neglected
or only partially included, a deficiency that could be
particularly serious in cases where mean lives are too
short to be observable in free decay. For this reason,
~we have generalized the cascade-decomposition pro-
cedure to include driven excitations, and have developed
a formalism by which the instantaneous radiation from
an arbitrarily driven, arbitrarily cascaded and blended
level system can be specified.

For an ‘arbitrarily cascaded level # that is excited
with a cross' section ¢, by an excitation Q(¢), the
instantaneous population NV, (f) is (neglecting collisional
de-excitation and radiation trapping) governed by

AN o/di=0.0()+% Ni({®)Ajn—NoBan, (1)

where A;, is the transition probability for a cascade
from level j and a, is the inverse mean life of level #.
We assume that N,(—)=0 for all levels except the
ground state. Equation (1) has the integrating factor
exp(aa?), and can be rewritten as

d . ‘
EEN #(D) exp(ant) 1= explant)[oaQ()+L Ni(O)4jn]. (2)

The solution can thus be written rather concisely in
terms of an integral operator L, defined as?

L—T): {(T)= / IT expl—a(i—=T)I/(T) @)

and the solution of the population differential equation
is given by ’

Nal)=aLalt=T): QD)+ AnLali=T):NAT). (8)

A similar equation also holds for each of the cascade
levels. To obtain the cascade series expansion, we first
neglect indirect cascades, and use Eq. (4) to compute
the populations of the direct cascades, given by

N(O)y~0;L;(t=T):Q(T): )
We then substitute this into Eq. (4), to obtain
No(O)~e,L.(t—T):Q(T) .

+X 0jdmLa(t—t): Lt = T):Q(T), (6)

r :
which is the first-order cascade approximation. For the
next iteration, we assume that the cascade level N;(#)
has the form of Eq. (6), substitute this into Eq. (4),
and obtain the second-order cascade approximation.
This process is repeated until the highest-order ton-
tributing cascade level is included, at which point the

expression becomes exact. Thus the population is given
by the operator expression

No()=[onLa(t—T): +Z_‘ ol jnLa(t—1") (Lt —T):

+Z Z O'kAijjnLn(t—l'):L,-(t—t”): _
KLAt'=T)i+++- 10T, (D

These nested L integral operators have a closed algebra,
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and, as is demonstrated in the Appendix,

Li(t—1): Lt = T): Q(T)
=Lk(t—T):Q(T)+L,-(t—T):Q(T)

oj—0

®
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[In the special case ax=a; the right-hand side becomes
—8(Ly:Q)/dar.] Thus the products of L operators can
be rewritten as sums of the same L operators with
appropriate coefficients, reducing the solution of the
problem to the evaluation of a single representative
integral. For added generality, we compute the radiated
intensity I,;()=N.(f)A4;, and sum over any levels #
and f that are not resolved, thus including blending
also. The final result is given by

L= ¥ Anf[«nLn:Q
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The level population N,(f) is the factor in braces.
This is the most-general solution of Eq. (1), and
accounts exactly for an arbitrary complexity of condi-
tions of excitation, cascading, and blending. Explicit
solution requires only the evaluation of L:Q for a given
analytic or empirical excitation function Q(f). We list
below the results for several such examples.
Example 1 Impulsive excitation,

QO=0w ().
It is obvious from Eq. (3) that; for such excitation
Lj:Q=Qoexp(—ajt) (t>0)
=0 (#<0). (11)
Substitution of this into Eq. (9) yields an expression
that, for >0, corresponds to free decay, and accordingly

agrees with the results given in Ref. 1, with N;(0)=¢,Qs.
Example 2 Stepwise excitation,

Q=00 (>0)
=0 (1<0). (12)

Since a step function is the integral of a & function, it is
equally obvious that, for this case

L;:Q=Qd[1—exp(—a;t)1/a;
=0

(10)

#>0)
(t<0).

(13)
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This expression generalizes the relationship for the
approa.ch to equlhbnum under constant bombardment,
which is described in many elementary textbooks?® for
the uncascaded case.

Example 3 Rectangularly pulsed excitation,

QW)=00 (0<t<a)
=0 (0>f>a). (14)

This is a combination of examples 1 and 2, and the
solution is given by

| (t> a)

L;:Q= Qo exp(a;a) —1] exp(—ajt) /a;
=Qo[1—exp(—a,-t)]/a,~ (O<t<d)
=0 (1<0). (15)
Example 4 Gaussian excitation,
o —_2 2 2
o= 2R/ 1) (16)

2r)w

This integration yields the result

t—wzaj 17
Viw ):I( )

Note that this reduces to example 1 for w<1/a;.
Example 5 Modulated excitation,

Q (i) = Q0+M coswi

L;:Q=3Qo exp[ —a;t+wa;?/ 2][1+erf(

=Qu+M Relexp (i) (18)
For this case, the integration yields
L;:0=Qo/a;+M Rel[exp(iwt)/ (aj+iw)].  (19)

For this type of excitation, the measured quantity is
usually the phase shift of the emitted radiation relative
to that of the driver. For this reason it is not convenient
to substitute the real part of this expression directly
into Eq. (9), because this would yield a sum of partial
phase shifts embedded in trigonometric functions.
Therefore, we choose instead to retain the nested
complex notation until the final equation, thus display-
ing the total phase shift explicitly. Since both the
modulated and dc terms are separately eigenfunctions
of the operator L, the solution is obtained from Eq. (7)
with operators replaced by eigenvalues, so the intensity
is

In()= 2 AnsQo —+Z + 2 ——

n 7 [2 410 73 k g
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E (ak—i-'iw)(a,--f-iw)(an'i‘iw)—r

Xexp(iwt)}. (20)
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The phase shift is given by the argument of the factor
that multiplies exp (twf). In the special case where only
direct cascades contribute, this result agrees with that
of Lawrence and Savage,* and permits the inclusion of
arbitrary indirect cascading and blending as well.

In addition to analytic functions such as these,
convolutions of experimentally measured excitation
curves can be obtained by numerical integration.
Lawrence® has developed a computer program that
numerically forms the convolution of the “prompt”
curve of his pulsed-electron-excitation source with a
two-exponential fitting function, thus determining a
singly cascaded or blended mean life, using both the
excitation and free-decay data.

Thus Eq. (9), together with the convolution of the
excitation, provides a surprisingly simple description
of a driven atomic, molecular, or nuclear level system.
‘This permits the determination of means lives and
excitation cross sections as fitting parameters for
measured driven intensities, in much the same way as
is often done for free decay. This could increase the
amount of data utilized in a given measurement, and
might also provide access to some states too short-lived
to be observable in free decay. Conversely, this descrip-
tion also allows the prediction of instantaneous popula-
tions and emitted intensities for level systems of known
‘transition probabiliities and excitation cross sections,
under various conditions of driven excitation.

APPENDIX

Using the definition of the L operator given in Eq.
(3), we consider the integral

t
Lk:L,-:Q=/ di’ exp[ —ai(t—1t')]

X/ dT exp[ —a,;(t' —T)JQ(T)
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t .
= exp(—axt) / dt’ exp[(ar—oy)t']
P ‘I .
X/ dT exp(o; T)Q(T).
Integrating by parts, we obtain
Ly: Lj:Q=exp(—aut)
exp[(ax—a)t'] ¥ ~ et
X ”:-—————~—/ dT exp(a,-T)Q(T):I
(ak‘_aj) —w t'=—00
¢ expllax—ayt’]
- / dtt —————"= exp(a;)Q(1') },
— (ak—a,-

which reduces to

Li:Lj:Q=(L;:Q—Li:Q)/ (ar—a)).

The special case ay=a; is readily obtained by the
application of I’'Hopital’s rule; which yields

Lk:Lk:Q= —a(Lk:Q)/aOlk.
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