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Abstract. A method is presented which permits the determination of relative initial p-state
populations and combined s- and d-state populations of beam-foil excited hydrogenic
atoms from Lyman and Balmer decay curves. The method utilizes exact and linear cascade
relationships which exist between corresponding portions of these decay curves when they
are measured under common excitation conditions, and does not involve exponential
curve fitting. The technique determines (but does not require a measurement of) the relative
normalizations of the various decay curves by a simple linear regression, thus inferring
initial populations from the renormalized relative intensities as extrapolated to the foil
position. The basic relationships of the method are developed, and results are presented
from a computer study of the quality of data which would be required to extract populations

by this technique.

Introduction

The relative initial populations of beam-foil excited
hydrogenic levels have been studied by a number of
authors [1-11] using techniques such as multi-
exponential curve fitting and electric field stark
quenching. Recent increases in experimental resolution
and in the time window after excitation which can be
reliably viewed [13] have made possible highly
reproducible results for the n=3 level populations
[8, 11]. An interesting technique, developed by Tielert
and Bukow [10], has been utilized to jointly analyze
simultaneously measured Ly, and H, decay curves
by a correlated non-linear curve fit, thus including
effects of several cascades in the population deter-
mination. The success of this approach suggests that
it is experimentally possible to include large numbers
of cascades in such an analysis [ 12]. We have therefore
developed a formalism by which a large fraction of or
even the entire Lyman and Balmer series can be
incorporated into a unified analysis which deter-

mines the relative p-state and admixed s- and d-state
populations through a correlated linear regression,
which utilizes the measured decay curves (rather than
their multiexponential representations) as the basic
fitting functions.

Computational Methodology

The 2 p level in hydrogenic atoms has a single radiative
decay to 1s, and is repopulated by direct cascades
from the various ns and nd levels, so that its population
is governed by

dNZ p/dt: Z3[an(t) Ans 2p +Nnd(t) Ande] - Nlp(t)/TZp
. (1)

where N, denotes the instantaneous population of a
level with principal quantum number n and orbital
angular momentum quantum number ! (summed
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over the meanlife-degenerate fine and hyperfine sub-
states), A,,,, is the transition probability between
such states and 7,, is the meanlife of the 2p state.
The decay curves of the Lyman and Balmer series
depend explicitly upon these same quantities. Thus
the measured intensity of the Lyman series can be
written

Inl(t)=5n1an(t)Anpls (2)

while the Balmer series is described by the degenerate
set of transitions

InZ(t)=én2 [an(t) AnsZp+an(t) Anp 2s+]\]nd(t) And2p]
3)

where I, denotes the intensity detected by the
spectrometer system at the appropriate wavelength
ata given time ¢ after excitation, and &, is the detection
efficiency at that wavelength. Notice that the nth
element of the Balmer series contains the cascade
terms from ns and nd into 2 p, and would correspond
to the bracketed term in Eq. (1) if the np term were
subtracted off. This can be done, since the correspond-
ing np term is contained in the nth element of the
Lyman series. Thus the substitution of Eqgs. (2) and (3)
into Eq. (1) yields

0

Iy () + fz,,dlzl/dt=n;[an Ly ()= b, 1,1 (1)] (4)
where

a,=¢21/8n2; (5)
by=E51 Anp25/Cn1 Anpis- (6)

Eq. (4) interrelates the entire set of Lyman and Balmer
decay curves (and the slope of Ly,) for each point in
time. Since a beam-foil experiment measures time as a
flight path, t can conveniently be expressed in centi-
meters if 7,, denotes the corresponding distance
traversed by the beam in one 2p meanlife. The rela-
tionship is linear in the constant coefficients 7,,, a,
and b,, which can be evaluated by a linear regression.
Although the number of fitting parameters is formally
infinite, it can in practice reduce to a few. For example,
if a sufficiently accurate velocity determination can
be made, the 2p decay length can be fixed from the
theoretical 2p meanlife (given by (9/40Z)*ay/c=
1.595/Z*). The criteria for this determination were
studied by computer simulation and are discussed
in the next section. With regard to the infinite sum,
it is possible that the beam-foil excitation function
decreases with increasing principal quantum number
n strongly enough that direct cascades from the higher
levels become negligible, allowing the sum to be
terminated without significant error. Such a termina-
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tion would not entirely neglect higher levels, since
indirect cascading from them is inherently contained
in the measured decay curves. Criteria for this pos-
sibility were also explored for computer simulated
data, and are also discussed in the next section.
However, even if direct cascades from very high lying
levels are important, the number of effectively
non-identical fitting parameters is quite limited, since
the detection efficiencies become equal as the wave-
lengths converge at the Rydberg series limits. Further,
the ratio A,,15/4.,2s also converges for large n,
as can be seen when it is written, using the formulae
of Bethe and Salpeter [14], as

e (=) [armis) -

- 23 (7)
This ratio is 7.45, 7.05, 6.95 and 6.90 for n=3,4, 5 and 6,
and converges to e*/23=6.825 for large n. The wave-
lengths of the Lyman lines between Ly, at 973 A
and the series limit at 912 A fall in a region for which
the response of detectors such as the channel electron
multiplier is reasonably flat, and it should therefore
be possible to make the replacement

np2s

Z annl(t);boo Z,Inl(t) (8)

where v could possibly be as low as 4. The intensity
summation could be obtained either by widening the
bandpass of the spectrometer to include the desired
lines, or by a point-by-point merging of the separately
measured decay curves normalized to spectral scan
intensities. A similar instrumental summation could
be made for lines near the Balmer limit, provided the
detection system possessed a reasonably flat response
in the region of 3645 A.

Since Eq.(4) exposes a continuous set of linear
relationships parameterized by time, there are many
alternative techniques by which the measured decay
curves I,, can yield a discrete set of numerical rela-
tionships. For example, a set of suitably incremented
time abscissae could be chosen, and numerical
techniques used to obtain multipoint estimates of
the local values and (for Ly,) numerical derivatives
for each. A number of numerical techniques accomplish
this quite well without degrading the resolution of the
data, e.g. Savitsky and Golay [15] have tabulated
sets of weighting coefficients which smooth and
differentiate by a local polynomial regression of a
point and several of its near neighbors. An alternative
but similarly directed approach is to convert the
differential equation to an integral equation. Thus
if we integrate both sides of Eq.(4) between the
arbitrary limits 7; and 7; and exchange the orders
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of integration and summation, it assumes the form
(with the aforementioned terminations on the sum)

x(TI’ TF)= Z3[anyn(’1}9 TF)_bnzn(’]}s TF)] (7)
where

x(T;, TF)=T§ dt L1 (O)+ 15, [ 1 (Te)— 11 (T, ®)
3ul(Ti, To)= | dt,50) ©)

T

Tr
2,(Tr, Te)= [ dt L, (0). (10)

T
The integrations automatically average over fluctua-
tions, and the subtraction in Eq. (8) can be smoothed
by the techniques described above. In this case each
suitably different choice of T; and T; will yield an
independent relationship. Thus, with either the differ-
ential of integral approach, a standard linear regression
(weighted, if criteria can be established) yields values
for the various a, and b,, and if desired, 7,,. These,
in turn, infer population information when coupled
with the decay curves, as extrapolated back to the
t=0 foil position. Thus, from Egs. (2) and (6) we can
relate

Inl(O) — IVnp(O) AanS
" 121(0) N2p(0) A2pls

_ N,,(0) 223%n(n*—1) (n—2)2" (an
TN,0 (- \nt2

Similarly, from Egs. (2), (3), (5) and (6)

a_n In2 (O) —1= an(o) Ans 2p+Mld(0) And 2p

bn Inl(O) ]Vnp(O)AnPZS

_Ns@ N0 2 )

"N, (0 22(*—1) " N,,(0) 5(n*—4)
where the transition probability ratios have been
evaluated from their theoretical expressions [14].
The p-state populations are unilaterally determined
by Eq. (11), while Eq. (12) determines only a weighted
sum of the s- and d-state populations, weighted
strongly, however, toward the d-states (10.24 to one
for n=3, approaching 6.4 to one for large n).

Computer Simulation

In order to investigate the experimental precision
necessary for accurate analysis by this method,
simulated decay curves with controlled statistical
errors were computer generated by the diagrammatic
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mnemonic technique [16] using theoretical transition
probabilities [14] and population models of the form

N, (0)=Q214+1)C/n*+? (13)
and
N, (0)=C/n*+? (14)

truncated, of computational necessity, above some
value of n. The effects of this truncation can be esti-
mated, since for s> 1 the untruncated models converge
to a finite total population for an infinite number of
states. Thus the total population of all states which
cascade either directly or indirectly into 2p is, for both
Egs. (13) and (14), given by

©w n~1
N=n§1 lgoMz(O)—l\ép(O)

=C[{(s)—1—-275-375"1] (15)
where {(s) is the Riemann Zeta-function, which is
tabulated [17]. Thus one can compute, for example,
that for s=2, 499 of the population lies above n=6,
while for s=3, 219 of the population lies above n=6,
etc. Thus a reasonable approximation of a fully
populated system can be obtained from these truncated
models.

The simulated decay curves were analyzed by the
suggested method, and the accuracy with which the
model populations were retrieved was studied as a
function of the following experimental variables:
(a) the time window, i.e, the total usable decay
length (in ns) after the foil, (b) the statistical accuracy
of the data, (c) the precision with which the beam
velocity is known, (d) the number of decay curves
included in the analysis, and (e) the number of fitting
parameters allowed to vary. The results can be briefly
summarized as follows. The minimum time window
was about 20 ns, and shorter decay lengths required
prohibitive statistical accuracies. Increasing the time
window beyond 50ns did not usually enhance the
determination, since equal scaling times were used
and statistical accuracy on the tails became low
(particularly when simulated background subtractions
exceeded decay intensities). In addition, when higher
decay curves were omitted, extending the time window
past 50 ns actually worsened the determination, as
the omitted longlived states began to dominate. With
an adequate time window a statistical accuracy of 1%,
at t=0 was usually sufficient to extract 109/ popula-
tions in the absence of other errors, and in the presence
of data omissions and velocity errors sufficient to
prevent population extraction, increased statistical
accuracy did not materially improve the populations.
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When a fixed velocity was used, the technique proved
to be very sensitive to errors in its value, and velocity
errors as small as 0.29, sometimes introduced sub-
stantial errors in populations. Post-foil beam energy
analyzers of 0.1% accuracy have been applied to
beam-foil studies [18], but if a velocity measurement
of such accuracy is not possible, the velocity should
be treated as a free parameter. The neglect of higher
decay curves produced sizable errors for the un-
normalizable population models with s=1, but with
s=2 and s=3 it was often possible to recover accurate
populations with as few decay curves as Ly,, Ly,
and H,, or Ly,, Ly, Ly,, H, and Hj included. Predict-
ably, as more fitting parameters were added, it became
successively more difficult to accurately extract them.
This indicated that the reliability of this technique
would be considerably enhanced if it were possible
to determine experimentally a few of the relative
detection efficiencies of the higher lying lines of a
given Rydberg series.

Conclusions

The results of this study indicate that, although special
care must be given to some factors in a measurement
intended for analysis by this technique, the required
conditions should be experimentally attainable. This
technique is therefore suggested as an appropriate
means of correlating the Lyman and Balmer series
to determine the initial population of beam-foil excited
hydrogenic atoms. It would be particularly interesting
to compare the results of an analysis of Ly,, Ly,
and H, by this technique with a similar analysis by
the technique of Tielert and Bukow (treating the
velocity as a free parameter) since each method has
advantages and disadvantages. The former does not
separately determine s- and d-state populations, but
incorporates three decay curves with only three free
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parameters. The latter separates the populations, but
incorporates two decay curves with eight free param-
eters. Two of the parameters, 7,, and a; =¢,,/¢;, are
common to both analyses, and agreement would pro-
vide an important consistency check.
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