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Abstract. A procedure for directly prescribing a term of arbitrary order in an oZ expansion
of the Dirac energy of a one-electron atom is presented, and utilised to obtain higher-order
corrections to the Dirac fine-structure formula. These can then be combined with terms
not included in the Dirac formalism and applied, for example, to semi-empirical charge-
screening parametrisations of multi-electron atoms.

Although the energy eigenvalues of the Dirac equation for a one-electron atom are
given by an elementary analytic expression, the exact formula involves nested powers
and roots of quantities close to unity, and is inconvenient for precise numerical
evaluation. Thus an expansion is usually made in powers of aZ, where a is the
fine-structure constant and Z is the nuclear charge. This expansion was first formu-
lated in the context of the Bohr atom, and an interesting interpretation of the corres-
pondence principle suggested that the unexpanded expression is an approximation
and an appropriately truncated expansion correctly describes the atom. For a truly
one-electron atom extensive numerical tabulations of energy levels are available (Gar-
cia and Mack 1965) and such classical models are of only historical interest. However,
this single-electron Dirac-energy expansion has also been utilised for multi-electron
atoms in studies which account for core electrons through an effective screened charge
(Edlén 1964). Here the test of the model lies not in the rigor of its theoretical formula-
tion, but in the regularity of its parametrisation of measured data and its effectiveness
for reliable isoelectronic interpolation and extrapolation. In testing the usefulness
of these classical models in parametrising a number of isoelectronic data collections
it became necessary to generate higher terms in the Sommerfeld-Dirac expansion.
To facilitate this, an explicit expression has been developed by which an arbitrary
term can be obtained directly as a function of the various quantum numbers. For
terms up to (xZ)'® a tabulated set of determining coefficients is provided herein.

The relativistic energy of a one-electron atom was first obtained and expanded
to order (xZ)® by Sommerfeld (1919). This formula was then immediately applied
to a multi-electron system, to deduce an effective screened charge from x-ray L-doub-
let separations (Sommerfeld 1919). In this context arguments were presented that
data should be reduced using a truncated form of the series expansion rather than
the exact expression (Sommerfeld and Heisenberg 1922, Green 1923). These arguments
were based upon the correspondence principle, which held that terms smaller than
the energy which would be radiated per orbital revolution according to the classical
theory should not be retained. Guidelines for the truncation of the expansion as
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a function of charge and quantum numbers were proposed. Green (1923) extended
Sommerfeld’s expansion to order (xZ)'°, and compared the regularity of empirical
screening parameters for various orders of truncation, finding some evidence for
higher regularity with truncation of the expansion according to these guidelines. When
the Dirac theory was developed, Sommerfeld’s expansion required only a restatement
in modern symbols. The series is still seldom carried beyond order (xZ)%, but this
is due to the realisation that the Dirac equation is itself an approximation, and
does not contain effects such as the interaction of the electron with its radiation
field, the finite extent and finite mass of the nucleus, etc, which can also contribute
terms of this order in «Z. In the simplest case of an [ =1 doublet, the radiative
correction to the fine-structure splitting is proportional to o«(xZ)*In(«Z)?. It is interest-
ing that this quantity is negative, and thus has a tendency to nullify the effects
of higher terms in the expansion of the Dirac energy, which are always positive,
and could explain the apparent success of the correspondence principle truncation
of the classical model. Expressions which describe the various corrections not included
in the Dirac energy as a function of o, Z and the various quantum numbers are
available (Garcia and Mack 1965, Sobel’'man 1972) which can be combined with
the Dirac energy, expanded to various orders as described herein, and used to con-
struct empirical models for the parametrisation of data.
The Dirac energy of a one-electron atom is given by

EUALZ)__<1+ (02)? >*1“
mc* [n—i=3+ i+ 9 - 277
where E is the relativistic energy, which includes the rest energy mc?, n is the principal

quantum number and j is the total angular-momentum quantum number. The number
of parameters in equation (1) can be reduced to two through the substitutions

(1)

x = (aZ/n)? (2)

b=n/(j+3) | @)
in terms of which equation (1) becomes

E/mc® = [1 + x/[1 — (1 — 1 — b2x)/p1?]~ "2 4)
Equation (4) is a nesting of four binomial quantities

E/me* = (1 + xv)~ Y2 )

v=(1 —u/b)? (6)

u=(1-1 (7

t=(1 - b2x)\? (8)
which can each be subsequently expanded by the binomial theorem

Efme® = Y (“1?)(xv)? 9)

p=0
vP =3 (TP(—ub) (10)
g=0
q
o= 3 oy 0
r=73 ) (=bxr (12)

s=0
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where the binomial coefficients have their standard definition
Al
=
B'(A — B)!

If equations (9)-(12) are combined, powers of x and b collected, and the orders of
summation over ¢ and r are interchanged with that over s, they form

(13)

E x * x q
— = 3 2 XY BETATH() Y (EA(=err, (14)
mc p=0s-0 q-0 r=o
To obtain the numerical coefficients for specific powers of x and b we shift the p
sum to P = p + s, interchange the orders of s and ¢ summations, and shift the ¢ sum
to Q = 25 — g. After repaying the substitutions of equation (2) and (3) this yields

En,j, Z) : <ocZ>“’ “’( n >Q
—— = R - C 15
ch P=0 n QZO ] +% Fo ( )

25—

0 0
Cro= Y (F2)CFIE) L (=172 (16)

5= Snin r=0

&

where

with s, = Q/2 for Q even and s,,;, = (Q + 1)/2 for Q odd. Notice that the Cpy
involve only finite sums (which in practice contain a very limited number of non-
vanishing terms) and correspond to a single set of rational numbers, independent
of n, j or Z. Values for Cpy for P and Q from 0 to 9 are listed in table 1. Notice
that Cop = dgp, so that the P = 0 term yields simply the rest energy, and that
Cig = —00¢/2, so that the P = 1 term yields the Balmer energy. Terms with P > 2

Table 1. Columns correspond to a given value of P in (aZ/n)**. Rows correspond to
a given value of Q in [n/(j + $)]% Entries are presented as rational fractions, with the
common denominator for each column denoted as ‘Norm’.

Cro P =0 1 2 3 4 5 6 7 8 9
0= 0 1 -1 3 =5 35 —63 231 —429 6435 —12155
1 —4 12 —120 280 1260 2772  —48048 102960
2 -6 120 —420 2520 —6930 144144 — 360360
3 -2 -8 180 —1960 7770  —210672 648648
4 —24 80 0 —2520 129360 — 576576
5 -8 —24 504 —1736 15120 121968
6 -30 140 518 — 39312 152460
7 —10 —84 690 —11664 —33660
8 —84 140 9072 — 58608
9 -28 —140 7920 —8624
10 —126 1200 16632
11 —42 — 1872 11880
12 —1584 1320
13 —528 —3168
14 —2574
15 —858

Norm 1 2 8 16 128 256 1024 2048 32768 65536
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have non-vanishing Cpy for Q > 0, thus involving j, and therefore constitute the
fine structure.

The fine-structure separation Ao of a multiplet of orbital angular momentum
I is given by

Ao(n, 1, Z) = [E(n,1 + 4, Z) — En, | — &, Z)]. (17)

Since they do not involve j, the rest energy, the Balmer energy, and all terms contain-
ing Cpo cancel, and the first terms in equation (15) which contribute to equation
(17) have P =2 and Q = 1. From table 1 we can also see that for P > 1 the Cpg
vanish for Q > 2P — 2. Thus the sums in equation (15) can be shifted to f = P — 2
and y = Q — 1 when inserted in equation (17), which becomes

Aa(n, l, Z) 0 aZ 2p+4 28 ny+1 ny+1
- 7 Z <_> (l + 1)y+1 - l«/+1 Cﬂ+2,y+1' (18)

mc pSo\ n
If we factor out the lead term and denote R = —a’mc?C,,, where R is the Rydberg
constant (which may include the standard ‘reduced mass’ correction. but has an
accompanying correction of order («Z)* for the relativistic non-separability of reduced
masses) then the expression assumes the form

Ra?Z* 2

i 2 2 0 ®

y=0

Ao(n, 1, Z) =
where
Zon (41t — (! Cpiayt1
A=Y o T Y Cor

y=0
Clearly Ay(n, ) = 1. Equation (20) can be used together with table 1 to obtain Ay(n, I)
for arbitrary values of 8, n and I. These can be compared with published expressions

(20)

10

Aplnt)

Figure 1. Plot of the fine-structure correction coefficients 4, against f, the order of the
correction in (xZ)*” for the 3p, 10p and 3d levels.
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for A4,(n,I) and A,(n,1) (Edlén 1964) and for A;(n, 1), A,(n, 1) and Aj(n, 1) (Curtis
1977). Figure 1 shows A,(n, 1) plotted against B for various values of n and [ The
diminution of A4, with increasing f is rather gradual, particularly in the case of
p states (/ = 1) and the rapid convergence of equation (19) relies heavily upon the
smallness of (xZ)%.

Although terms arising in this expression of order higher than (xZ)® are probably
negligible in most cases, this procedure provides a convenient means of testing this,
and, if desired, of including these terms in an analysis.
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