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ABSTRACT

We report new results of atomic structure and atomic lifetime measurements in
highly-ionized few electron atoms obtained using position-sensitive detection of extreme
ultraviolet emission from excited fast ions. Data is presented from experiments run at the
Notre Dame Tandem Accelerator and at the Argonne ATLAS facility using beam-foil
spectroscopy with a photon-counting position-sensitive imaging detector. The results in-
clude excited state lifetimes in Si XI and Si XII involving both resonance transitions and
Rydberg transitions, spectra of highly-ionized He-like, Li-like, and Be-like nickel includ-
ing comparisons of electron capture and excitation processes for charge selected beams,
and spectra and lifetimes in highly-charged bromine ions for both allowed and forbidden
transitions.

INTRODUCTION

Measurements of excited-state lifetimes and transition wavelengths in highly-
ionized atoms provide tests of relativistic atomic transition probability calculations and
atomic structure calculations. The excitation of a fast-ion beam by a thin-foil target re-
mains the only versatile method for such measurements. We have applied position-
sensitive detection of vacuum ultraviolet emission from excited fast ions as a technique for
observing these atomic properties. Position-sensitive detectors allow for simultaneous
detection of spectroscopic features over wavelength ranges of ~10-100 A, thereby provid-
ing efficient data collection, and the fixed-detector assembly allows for improved
monitoring of time dependent source variations for both normal incidence and grazing in-
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cidence geometriesl. Photon detection was accomplished using a photon-counting
position-sensitive imaging detector consisting of a one-inch wide windowless channeled
electron multiplier array coupled with a resistive anode position sensor. The position de-
coding of the photon-induced electron pulses was obtained by comparison of the divided
pulse charges appearing at the two ends of the anode.

LIFETIME MEASUREMENTS IN HIGHLY-IONIZED SILICON

Spectra of Si'%* and Si'!* were produced by ionization and excitation of a beam of
42 MeV Si®* ions from the Notre Dame Tandem Accelerator, by directing the ions through
a thin-carbon-foil target of areal
density 30ug/cm2. An example of 500
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Figure 1. A single wavelength spectrum of

Rydberg transition complexes,
highly-ionized silicon near 1000 A

which include the unresolved n=5-6
transition in Si XII at 517.7 A (ap-
pearing in second order), and the
partially resolved n=6-7 transition in
Si XI appearing at ~1020 A. The
second-order linewidth of about 1.2
A is a convolution of the chosen res-
olutions of the spectrometer and the '
d=tector. ' .' I \

Simultaneous decay data for ‘,:(5';(!!!&
these transitions were obtained by N
measuring the spectrum at several
different distances along the beam
from the target foil, nommalizing to
the ion charge collected in a Faraday
cup beam stop. The intensity decay data typically consisted of multiplexed spectra at each
of about 20 spatial positions over a total distance of 10 cm. A superposition of these
spectra taken for a sequence of times after excitation is shown in Fig. 2. We find the 2p3p
lifetime to be 1.07+0.04 ns and the 2p; ., lifetime to be 1.20+0.04 ns. The uncertainties
account for statistical contributions, variations in small background corrections, and re-
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Figure 2. A superposition of spectra for a
sequence of times after excitation.
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producibility among data sets. These lifetime results are consistent with new relativistic
many-body perturbation theory calculations as discussed in Ref. 1.

WAVELENGTH MEASUREMENTS IN HIGHLY-IONIZED NICKEL

We have also made recent measurements of wavelength spectra of highly-ionized
nickel using a position-sensitive detector in the grazing incidence geometry. These mea-
surements were performed at the
ATLAS facility at Argonne Nation-
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conditions we found single electron Figure 3. A spectrum taken with preselected
capture to be more efficient, and a helium-like Ni*®* ion beam.

section of the spectrum using Ni%%*

incident ions is shown in Fig. 3, where the Ni*>* lines are shown to be more intense then
other charge states. The transitions visible in these spectra are the following Rydberg
transitions, helium-like Ni*** n=8-9 at 381.1 A, lithium-like Ni** n=8-9 at 411.0 A, and in
the second order of dispersion lithium-like Ni>>* n=6-7 at 182.8 A and beryllium-like Ni%**
n=6-7 at 197.8 A. The effective background noise was decreased in these spectra by taking
into account the 12.5 MHz pulsed nature of the beam by setting up a narrow window of
time in which true photon events were occurring, thereby allowing data collection only
when the true signal was present. One motivation for these transition studies is a mea-
surement of the 1s2s 331-132p 3Po transition wavelength in helium-like Ni*®*, to comple-
ment our earlier measurement of the 381-3P2 fine structure transition?.

LIFETIME AND WAVELENGTH MEASUREMENTS OF INTERCOMBINATION
TRANSITIONS IN HIGHLY-IONIZED BROMINE

We have also performed measurements using a position-sensitive detector to de-
termine the lifetimes and wavelengths for fine structure components of spin changing
intercombination transitions in multiply ionized bromine. This experiment was done at
ATLAS and involved beam-foil spectroscopy of 120 MeV bromine ions. With the viola-
tion of conservation of spin, the intercombination transitions are intrinsically weak and
have long lifetimes when compared with spin-conserving transitions. By taking data at
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several different positions after the target foil, the long lived nature of these states will
allow them to be visible in spectra far downstream of the excitation region (Fig. 4)°. The
rominent transition in the spectrum taken nearest the foil is the sodium-like 3s 2S152-3p

P11, transition in Br*** at 229.2 A, and the transitions that remain downstream of the foil
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Figure 4. A superposition of wavelength spectra for highly-ionized
bromine for a sequence of times after excitation.

are the inter-combination transitions 3s*'Sq-3s3p 3P, in magnesium-like Br=*at 254 A and
3s?3p 2P3,2-3s3p2 *Ps, in aluminum-like Br*?* at 260 A. The lifetimes for these intercom-
bination transitions are ~2 ns.
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