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Table 8. Scaling

Sequence Bα dα pα Bβ dβ pβ

Mg 2427 2.43 3.18 1148 0.61 3.37
Zn 504.7 1.96 2.42 2545 1.74 3.40
Cd 548.0 2.04 2.38 2667 1.78 3.28
Hg 231.4 2.05 2.08 1509 2.09 3.15

so the ratio of the bracketing width to the lower limit of β decreases even faster, as
1/ζ2. For αd the relationship is more complicated, but for very large Z the bracketing
and the upper limit scale together.

6.3. Charge scaling of the results

The polarizability data in tables 4 - 7 were fitted to the charge scaling equations

αd =
Bα

(ζ + dα)pα
; β =

Bβ

(ζ + dβ)pβ
. (33)

The fitted values are listed in table 8.

7. Relativistic effects in the Hg sequence

Homologous comparisons of these four isoelectronic sequences reveal interesting trends.
It can be seen from tables 4-7 that the oscillator strengths fns,np decrease with
increasing ionicity, consistent with the ∆n = 0 scaling with 1/ζ that was predicted in
equation (30). However, table 7 reveals that for the Hg sequence the oscillator f6s,6p

is nearly constant over the sequence, as would be expected for a ∆n 6= 0 transition as
predicted in equation (29). In all four sequences the Ens,np energy decreases with ζ
as expected, so the difference in scaling resides in the line strength factor.

The origin of this behavior lies in significant relativistic corrections that affect Hg
and its isoelectronic sequence [76, 77]. In earlier studies of the Cd [45] and Hg [31]
sequences, multiconfiguration Dirac Hartree Fock (MCDHF) calculations showed that
6s2 and 6s6p remain lower than plunging levels from the 5f and 5g subshells for all ions
through uranium. In contrast, for the Cd sequence, plunging levels from the 4f subshell
perturb the 5s5p levels above Z=60 and for Z > 62 the 4f levels replace 5s2 as the
ground state. Moreover, whereas the mixing angle reduction could be accomplished
using the Schrödinger formalism with LS coupling for the Mg, Zn, and Cd sequences,
MCDHF calculations for the Hg sequence indicated a significant difference between
the Dirac transition matrices 〈s1/2|r|p1/2〉 and 〈s1/2|r|p3/2〉, requiring use of the Dirac
formalism and jj coupling.

The reasons for these observations are closely related to the unusual fact that
mercury is a liquid at ambient temperatures. The 6s electron (and each s electron
in the core) is drawn in because of relativistic effects at small r. It can be made
plausible in terms of the Bohr orbit picture, since the speed of the 6s electron at
periapsis is v ≈ Zc/137 (for Z=80, v = 0.58c). The increase in the relativistic mass
causes the effective Bohr radius to shrink (although Zitterbewegung and the Darwin
term decrease the effect somewhat). Moreover, the magnetic coupling of the two
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paired s electrons is enhanced by the predominance of jj coupling, since spin-own-
orbit coupling to the nucleus dominates over spin-spin, orbit-orbit and spin-other-orbit
coupling to other electrons. Thus mercury atoms and ions in the Hg sequence behave
more like an inert gas than an alkaline earth.

It has been noted [76] that gold and mercury differ in melting points, densities,
electrical conductivities, the ability to amalgamate with noble metals, etc., by greater
factors than virtually any other pair of neighbors in the Periodic table. Similarly,
Tl II is more stable than Tl I, Pb III is more stable than Pb II, and Bi IV is more
stable than Bi III. Relativistic calculations have also explained the difference in color
between gold and silver [77].

Only the first four members of the Hg sequence are radioactively stable, and
measurements of the atomic structure properties of its radioactive members are
lacking. However, the atomic properties of the radioactive members have applications
in, e.g., modeling calculations of radiation transfer in astrophysical and controlled
fusion. Thus semiempirical extrapolations can provide useful estimates for the ions in
this sequence with Z ≥ 84.

8. Conclusions

For atomic systems in which the ground state oscillator strength is dominantly
concentrated in one low-lying resonance transition, the method described here provides
a powerful means to interconnect measurements and predictions of the quantities
αd, β, and τ . If a precision measurement of τ is available, αd and β can be
deduced. Alternatively, if a precision measurement of αd is available, τ and β
can be deduced. Moreover, screening parametrizations of line strength data permit
isoelectronic interpolation of a few precise measurements to obtain estimates of these
quantities for the entire sequence. The Mg, Zn, Cd and Hg sequences satisfy these
criteria very well, and the results presented here provide an extensive data base
spanning both homologous and isoelectronic sequences.
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