
Chapter 4
Motion in Two and Three Dimensions

In this chapter we will continue to  study the motion of objects without the 
restriction we put in chapter 2 to move along a straight line.  Instead we will 
consider motion in a plane (two dimensional motion) and motion in space 
(three dimensional motion)
The following vectors will be defined for two- and three- dimensional 
motion: 

Displacement
Average and instantaneous velocity 
Average and instantaneous acceleration 

We will consider in detail projectile motion and uniform circular motion as 
examples of motion in two dimensions

Finally we will consider relative motion, i.e. the transformation of velocities 
between two reference systems which move with respect to each other with 
constant velocity  (4 -1)



Position Vector
The position vector    of a particle is defined as a vector whose tail is at 
a reference point (usually the origin O) and its tip is at the particle at 
point P. 
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Displacement Vector

1 2For a particle that changes postion vector from  to  we define the displacement 
vector  as follows:  
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The displacement  r  can then be written as:∆r
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Average and Instantaneous Velocity
Following the same approach as in chapter 2 we define the average 
velocity as: displacementaverage velocity =  
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We define as the instantaneous velocity 
(or more simply the velocity) as the limit:
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If we allow the time interval t to shrink to zero, the following things happen:  
1. Vector    moves towards vector  and 0
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The three velocity components are given by 
the equations:
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Average and Instantaneous Acceleration
The average acceleration is defined as:

change in velocityaverage acceleration =  
time interval
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We define as the instantaneous acceleration as the limit:
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The three acceleration components are given by 
the equations:
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Note: Unlike velocity, the acceleration vector does not have any specific relationship 
with the path.  
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Projectile Motion
The motion of an object in a vertical plane under the influence of 
gravitational force is known as “projectile motion”

The projectile is launched with an initial velocity  

The horizontal and vertical velocity components are:
ovr

cosox o ov v θ= sinoy o ov v θ=

Projectile motion will be analyzed in 
a horizontal and a vertical motion 
along the x- and y-axes, 
respectively.  These two motions are 
independent of each other.  Motion 
along the x-axis has zero 
acceleration. Motion along the y-
axis has uniform acceleration ay = -g 
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Horizontal Motion:

Vertical Mot
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If we eliminate   between equations 3 and 4 we get
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Here   and  are the coordinates
of the launching point.  For many 

problems the launching point is
taken at the origin.  In this case
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The path equations has the form:    This is the equation of a parabolay ax bx= +

 The equation of the path seems too
complicated to be useful.  Appearances can
deceive:  Complicated as it is, this equation
can be used as a short cut in many projectile
motion prob

Note:

lems
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We can calculate the maximum height using the third equation of kinematics

for motion along the y-axis:   2  
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Uniform circular Motion:

A particles is in uniform circular motion it moves on a circular path of 
radius r with constant speed v.  Even though the speed is constant, the 
velocity is not.  The reason is that the direction of the velocity vector 
changes from point to point along the path.  The fact that the velocity 
changes means that the acceleration is not zero.  The acceleration in uniform 
circular motion has the following characteristics:              
1. Its vector points towards the center C of the circular path, thus the name 
“centripetal”                                                   
2. Its magnitude a is given by the equation:  

2va
r

=

C P

R

Q

r

r
r

The time T it takes to complete a full revolution is 
known as the “period”. It is given by the 
equation:

2 rT
v
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Relative Motion in One Dimension:
The velocity of a particle P determined by two different observers A and B varies 
from observer to observer.  Below we derive what is known as the “transformation 
equation” of velocities.  This equation gives us the exact relationship between the 
velocities each observer perceives. Here we assume that observer B moves with a 
known constant velocity vBA with respect to observer A.  Observer A and B determine 
the coordinates of particle P to be xPA and xPB , respectively.  

     Here  is the coordinate of B with respect to APA PB BA BAx x x x= +

( ) ( ) ( )We take derivatives of the above equation:     PA PB BA
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  Even though observers A and B
measure different velocities for P,
they measure the same acceler

Note: 

ation

(4 -15)



Relative Motion in Two Dimensions:
Here we assume that observer B moves with a known constant velocity vBA with 
respect to observer A in the xy-plane.   

Observers A and B determine the position vector of particle P to be 
 and   , respectively.  PA PBr rr r

      We take the time derivative of both sides of the equationPA PB BAr r r= +r r r
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   As in the one dimensional 
case, even though observers A and B
measure different velocities for P,
they measure the same acceler

Note: 
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