Chapter 4

Motion in Two and Three Dimensions

In this chapter we will continue to study the motion of objects without the
restriction we put in chapter 2 to move along a straight line. Instead we will
consider motion in a plane (two dimensional motion) and motion in space
(three dimensional motion)

The following vectors will be defined for two- and three- dimensional
motion:

Displacement
Average and instantaneous velocity
Average and instantaneous acceleration

We will consider in detail projectile motion and uniform circular motion as
examples of motion in two dimensions

Finally we will consider relative motion, 1.e. the transformation of velocities
between two reference systems which move with respect to each other with
constant velocity (4-1)



Position Vector

The position vector 7 of a particle 1s defined as a vector whose tail 1s at
a reference point (usually the origin O) and its tip is at the particle at
point P.

Example: The position vector in the figure is:

r=xi +yj+zk
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Displacement Vector

For a particle that changes postion vector from 7 to 7, we define the displacement

vector Ar as follows: AF =7 -7

The position vectors 7 and 7, are written in terms of components as:
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The displacement Ar can then be written as:
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Average and Instantaneous Velocity

Following the same approach as in chapter 2 we define the average

velocity as: , displacement
average velocity =

time interval
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We define as the instantaneous velocity
(or more simply the velocity) as the limit:
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If we allow the time interval At to shrink to zero, the following things happen:
1. Vector 7, moves towards vector 7, and Ar - 0

—

2. The direction of the ratio K: (and thus v, )approaches the direction

of the tangent to the path at position 1
3. v -V
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The three velocity components are given by
) the equations:
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Average and Instantaneous Acceleration

The average acceleration 1s defined as:

. change in velocity G =" _ Ay
average acceleration = , , avg At At
time interval

We define as the instantaneous acceleration as the limit:
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Note: Unlike velocity, the acceleration vector does not have any specific relationship

with the path.
The three acceleration components are given by

the equations:

_dv, dv, dv, _dv
a, — a, =——| |4, = a=—-
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Projectile Motion

The motion of an object in a vertical plane under the influence of
gravitational force 1s known as “projectile motion”

The projectile is launched with an initial velocity V,

The horizontal and vertical velocity components are:

v _=v cosfd, V, =v,sing,

: B s l Projectile motion will be analyzed in
3; d‘\o* a horizontal and a vertical motion
| "IN along the x- and y-axes,
a4 | respectively. These two motions are

independent of each other. Motion
along the x-axis has zero
acceleration. Motion along the y-

axis has uniform acceleration a,=-g
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Horizontal Motion: a. =0  The velocity along the x-axis does not change
v, =v,cos6, (egs.1) x=x, + (vo cos @, )t (egs.2)
Vertical Motion:  a, =—g Along the y-axis the projectile 1s 1n free fall

y

2
v, =v,sing,—gt (eqs.3) y=y + (vo sin Q))t —% (eqs.4)

If we eliminate ¢ between equations 3 and 4 we get: vi — (VO sin G, )2 =-2g ( V- yo)

L4 l Here x, and y_ are the coordinates
WP =0 | of the launching point. For many
problems the launching point 1s
A taken at the origin. In this case
e . |‘@ x,=0 and y =0

- Note: In this analysis of projectile

(4-8) l 5

air resistance

- motion we neglect the effects of
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The equation of the path:
2

gt

x=(v,cos6,)t (eqs.2) y=(v,sin§,)t e (egs.4)

If we eliminate ¢ between equations 2 and 4 we get:

y= (tan 8 ) X— & —x This equation describes the path of the motion
2(v, cos8,)

The path equations has the form: y = ax +bx” This is the equation of a parabola

Note: The equation of the path seems too
4 | LR complicated to be useful. Appearances can

i ¥ deceive: Complicated as it is, this equation

s can be used as a short cut in many projectile
O Y vy ,9: )
R 1& motion problems

(4-9)
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v, =v,cosf, (egs.l) x=(v,cos8)t (egs.2) E
2 _/‘5\3Tr/2 o
v, =v,sinf, —gt (eqs.3) y :(vO sin ¢9O)t —g? (eqs.4) O WZW

Horizontal Range: The distance OA 1is defined as the horizantal range R

At point A we have: y =0 From equation 4 we have:

. t’ . . . .
(v sin & )t & =0 . ¢t|vsing _& =0 This equation has two solutions:
0 0 2 0 0 2

Solution 1. # =0 This solution correspond to point O and 1s of no interest

Solution 2. v, sin G, _g?t =0 This solution correspond to point A

. 2v, sin G . .
From solution 2 we get: ¢ = "SR 1 we substitute ¢ in eqs.2 we get:
-‘*‘ g
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R has its maximum value when 8 =45°

2sin Acos A=sin2A4 max

2
R =Y (4 -10)
g




» @‘? . Maximum height H
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The y-component of the projectile velocity is: v, = v, sin §, — gt

Atpoint A: v, =0 - v sinf, —gf —¢ =5 sin &,
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} @t A Maximum height H (encore)
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We can calculate the maximum height using the third equation of kinematics
. . 2 _ 2 _
for motion along the y-axis: v~ —v, =2a ( y yo)

In our problem: y, =0, y=H , v, =v,sinf, , v, =0,and a =g -
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Uniform circular Motion:

A particles 1s 1n uniform circular motion it moves on a circular path of
radius » with constant speed v. Even though the speed 1s constant, the
velocity 1s not. The reason is that the direction of the velocity vector
changes from point to point along the path. The fact that the velocity
changes means that the acceleration 1s not zero. The acceleration in uniform
circular motion has the following characteristics:

1. Its vector points towards the center C of the circular path, thus the name
“centripetal” e

2. Its magnitude a 1s given by the equation: |a =—
r

/O\Q ?“ The time T it takes to complete a full revolution 1s
v r Ya
P

Cor known as the “period”. It 1s given by the
o equation:
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V=vi +vyf :( —vsin H)f +(vcos 6’)} sin @ =22

r
Here x, and y, are the coordinates of the rotating particle
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v r dt r dt r dt
We note that: dy; =v, =vcosfd and % =y, =-vsin g
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Relative Motion in One Dimension:

The velocity of a particle P determined by two different observers A and B varies
from observer to observer. Below we derive what is known as the “transformation
equation” of velocities. This equation gives us the exact relationship between the
velocities each observer perceives. Here we assume that observer B moves with a
known constant velocity v, , with respect to observer A. Observer A and B determine
the coordinates of particle P to be x,, and x,;, , respectively.

Xp, =Xps ¥X;, Herex,, 1s the coordinate of B with respect to A

oL : d d d
We take derivatives of the above equation: —(xP A) = —(xPB) +—(xB A) -
dt dt dt
Vo, = Vpg TV, If we take derivatives of the last equation and take
: dv,, _
into account that =0 - dpys — dpp
¥ | dt
. y
Frame A Frame B .
= & Note: Even though observers A and B
R . measure different velocities for P,
Via ] -
—_— e they measure the same acceleration
*BA XpA =Xpp t XpA
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Relative Motion in Two Dimensions:
Here we assume that observer B moves with a known constant velocity v, , with

respect to observer A in the xy-plane.
Observers A and B determine the position vector of particle P to be

7., and 7., , respectively.

We take the time derivative of both sides of the equation

F PA = ’7 PB t ’7 BA
d_. _d_. d._ L O =
P _EFPB +EI/BA = Vpy =Vpg Vg, Vps = Vpg TV,
If we take the time derivative of both sides of the last equation we have:
d _ d _ d _ : v . ~
—V,, =—V,, +—1V,  If we take into account that —24£ =0 - d,, =d,,
dt dt dt dt
, ' Note: As 1n the one dimensional
. i case, even though observers A and B
il measure different velocities for P,
i they measure the same acceleration

Frame A i (4 '1 6)



