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Abstract
We formulate an analytic method which accounts for the finite size of the
nucleus by treating it as a boundary value problem. The method is used to
obtain solutions of the Dirac equation for a central potential that is proportional
to 1/r only for values of the radial coordinate greater than a given value R.
Our results are applied to a non-perturbative calculation of the nuclear size
corrections to the energy levels of single-electron and single-muon atoms.
For values of the nuclear charge number Z greater than 40 in the case of
electronic atoms, and greater than 1 in the case of muonic atoms, we find
large discrepancies between our results for the atomic energy levels and those
obtained from first-order relativistic perturbation theory.

1. Introduction

It is well known that the discrete eigenvalues of the Coulomb potential closely approximate
the bound state energies of a single-electron atom. On the other hand, the unphysical infinity
in the 1/r potential at the origin makes it necessary that this potential be modified for values
of r inside a region about the origin that can be identified with the nucleus of the atom. The
resulting correction to the energy of the atom due to the finite size of the nucleus leads to
the familiar isotope shift between the energy levels of two atoms with nuclei that have the
same atomic number Z but different mass numbers A. In the case of electronic atoms, the
small magnitude of the nuclear size effect allows the nuclear size correction to the energy
levels to be accurately calculated by the use of perturbation theory [1], which is expected to
become inaccurate only for large values of Z. Instead, in the case of a muonic atom, in which
the inner electron is replaced by a muon with a mass approximately 207 times me, because
the radius of the muon’s orbit is approximately me/mµ times smaller than the radius of the
electron’s orbit in the electronic atom, perturbation theory becomes invalid for all values of Z
greater than 1. This makes it necessary to account for the alteration in the potential at small r
without the use of perturbation theory. This problem was recently addressed by Tibarzi and
Holstein [2] by constructing a solution to the Schrödinger equation for the muonic atom for
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all r, obtained by numerically matching distinct solutions of the equation inside and outside
the nuclear radius under the assumption of a uniform nuclear charge density. However, the
non-relativistic character of the Schrödinger equation and the importance of relativistic effects
on the states of particles close to the nucleus, made it necessary for these authors to make use
of perturbation theory to account for the effects of relativistic kinematics and the important
spin–orbit and Darwin terms in the complete interaction potential. Here, we instead present
a simpler analytic method that accounts for nuclear size effects based on a solution of the
Dirac equation for all r, and incorporates (exactly) the effects included in [2] perturbatively.
The method reduces the computation of the energies of the electron or muon, in interaction
with a finite size nucleus, to a boundary value problem involving a single unknown eigenvalue.
The resulting exact energy shifts produced by the nuclear size effect are dependent only on
the assumed form for the potential energy inside the nucleus.

A large number of publications exist relating to both nuclear size effects and the isotope
shift (see, for example, [3–6]). In the case of hydrogenic atoms with light nuclei, the
contribution to the isotope shift produced by the effect of nuclear size is known to be masked
by the larger mass-dependent contribution due to nuclear motion. In contrast, in heavy atoms
with large Z, the nuclear size effect becomes dominant, but the analysis of the effect is
complicated by many-electron effects. The present paper makes no attempt to address the
totality of effects on the electronic levels with magnitudes comparable to the nuclear size
correction. Instead, the intent is to put forward a method of analysis that correctly accounts
for the effect of nuclear size alone. As justification for our analysis, we note that the standard
expression for the nuclear size correction to the nth electronic level of a one-electron atom,
given by the formula3 EFinite Size = (2(Zα)4µ3)/(3n2)〈R2〉δ�0, (see [3, 4, 6]), is approximately
equal to the correction obtained from non-relativistic perturbation theory, which is shown to
be invalid for large Z. In addition, we note that, since a potential that becomes infinite at any
point can never be correct everywhere, and the eigenvalues computed from it must therefore
be inexact, a non-perturbative method for constructing more exact eigenvalues for such
potentials has a significance beyond its use in the description of the nuclear atom.

The structure of this paper is as follows. In section 2 we develop the theory underlying the
results we present. We emphasize, in particular, that if the infinity in the Coulomb potential
is removed near the origin, the usual series termination condition on the solution of the Dirac
equation is invalid, and the energy of the electron is determined by the boundary conditions at
the value of the radial coordinate for which the form of the potential is changed. In section 3
we carry out a numerical solution of the resulting boundary equations to obtain the corrections
to the energies of both electronic and muonic atoms produced by the finite size of the nucleus.
The solutions are based on two commonly used forms for the nuclear potential. Our numerical
results are compared with the results obtained from perturbation theory using both relativistic
and non-relativistic wavefunctions. In passing, we note that our analysis offers an alternative
to a previously proposed theory that predicted the existence of new states of the atom on the
basis of the finite size of the nucleus [7].

2. Theory

We focus on single-electron or single-muon atoms for which the potential produced by the
nucleus can be well approximated by a central potential V (r). The interest is in large values
of the charge number Z for which the tight binding causes the energy of the bound particle to

3 Here, µ and � are the reduced mass and orbital angular momentum quantum number respectively, α is the fine
structure constant and R is the radius of the nucleus. First-order non-relativistic perturbation theory gives the correction
to the ground state energy of the hydrogenic atom in equation (40).
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be relativistic. In this case, the wavefunction of the particle satisfies the Dirac equation in the
form

[−ih̄cγ0γ ·∇ + γ0mc2 + V (r)]�(r) = E�(r) (1)

where γ0 and γ represent Dirac γ -matrices, and m and E are the rest mass and total energy of
the electron or muon respectively. The solution of equation (1) can, in general, be represented
as a four element column matrix dependent on the spherical coordinates, r, θ and φ, of the
coordinate vector r as

�(r) =
(

ig(r)�j�mj
(θ, φ)

f (r)�j�′mj
(θ, φ)

)
(2)

where �j�mj
(θ, φ) is a two-row spherical spinor, and the quantum numbers � and �′

characterize the upper and lower components of the Dirac matrix. What is relevant is the
dependence of � on the radial coordinate r, expressed through the radial functions g(r) and
f (r), which the Dirac equation connects through the coupled equations[

d

dr
+

1 + κ

r

]
g(r) − 1

h̄c
[E + mc2 − V (r)]f (r) = 0 (3a)

[
d

dr
+

1 − κ

r

]
f (r) +

1

h̄c
[E − mc2 − V (r)]g(r) = 0. (3b)

Here, for a given value of j , the quantum number κ has the possible values ±(
j + 1

2

)
,

corresponding to values of � and �′ equal to j ± 1
2 and j ∓ 1

2 respectively, with the parity of
�(r) given by (−1)�.

2.1. Solution of the Dirac equation exterior to the nucleus

For values of the radial coordinate r greater than or equal to a value R which defines the
nuclear radius, we assume that the central potential has the Coulomb form,

V (r) = −Ze2/r, (r � R). (4)

As is well known, introduction of the dimensionless coordinate variable ρ ≡ 2qr , with

q ≡
√

(mc2)2 − E2)

h̄2c2
, (5)

and use of the sum and difference functions

u±(ρ) ≡ ρ
3
2


g ∓

√
mc2 + E

mc2 − E
f


 , (6)

leads to uncoupled equations for u+(ρ) and u−(ρ) in the forms
 d2

dρ2
−

[(
j + 1

2

)2 − (αZ)2 − 1
4

]
ρ2

+

[
αZ E√

(mc2)2−E2
± 1

2

]
ρ

− 1

4


 u±(ρ) = 0, (7)

with α = e2/h̄c. Equation (7) has the general form of Whittaker’s equation[
d2

dρ2
− γ 2 − 1

4

ρ2
+

β

ρ
− 1

4

]
M(ρ) = 0, (8)
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where

γ 2 =
(

j +
1

2

)2

− (αZ)2, β = β± = αZ
E√

(mc2)2 − E2
± 1

2
. (9)

Subject to the condition that 2γ is not equal to zero or a positive or negative integer, the
general solution of equation (8) is a linear combination of two particular solutions, Mβ,γ (ρ)

and Mβ,−γ (ρ) [8], which differ in the sign of the square root of the parameter γ 2. Explicitly,
the particular solutions corresponding to plus and minus γ can be expressed in terms of
confluent hypergeometric functions 1F1 through the relations

Mβ,±γ (ρ) = ρ±γ + 1
2 e−ρ/2

1F1
(±γ − β + 1

2 ,±2γ + 1, ρ
)
, (10)

where the function 1F1 has the series representation,

1F1(a, b; ρ) = 1 +
a

b
ρ +

1

2!

a(a + 1)

b(b + 1)
ρ2 + · · · . (11)

As a consequence of the divergence of the series in equation (11) at ρ = ∞ the functions
Mβ,γ (ρ) and Mβ,−γ (ρ) are both divergent for large r unless the series forms of the solutions
are terminated by a choice of the parameter β such that the first argument of 1F1 is equal to a
negative integer.

If the Coulomb potential is assumed to be valid at the origin, the divergence of the
function Mβ,−γ (ρ) at ρ = 0 requires the coefficient of this function in the general solution of
equation (8) to be equated to zero. The condition on the parameter β required to terminate
the series representation for the solution Mβ,γ (ρ) then leads to the familiar formula for the
allowed energy eigenvalues of the electron given by

E = mc2

(
n′ +

√(
j + 1

2

)2 − (αZ)2
)

√(
n′ +

√(
j + 1

2

)2 − (αZ)2
)2

+ (αZ)2

, n′ = 0, 1, 2, . . . . (12)

Instead, in the case when the finite size of the nucleus restricts the range of ρ in which
the Coulomb potential applies, so as to exclude the value zero, the divergence in Mβ,−γ (ρ)

is removed, and the general solution of Whittaker’s equation is a linear combination of
both functions Mβ,γ (ρ) and Mβ,−γ (ρ). Here, however, the relation 2γ 	= integer makes it
impossible to terminate the series forms of both functions for the same value of β. As a
result of this, a non-divergent solution of equation (7) can be obtained as a linear combination
of Mβ,γ and Mβ,−γ only if the two functions are combined so that the divergences in the
separate functions at ρ = ∞ cancel exactly. For this purpose, it is possible to make use of the
asymptotic forms of the confluent hypergeometric functions given by the equations

lim
ρ→∞ 1F1

(
γ − β +

1

2
, 2γ + 1, ρ

)
= �(2γ + 1)

�
(

1
2 + γ − β

) eρρ− 1
2 −β−γ +

�(2γ + 1)

�
(

1
2 + γ + β

) (−ρ)−
1
2 +β−γ

(13a)

lim
ρ→∞ 1F1

(
−γ − β +

1

2
,−2γ + 1, ρ

)
= �(−2γ + 1)

�
(

1
2 − γ − β

) eρρ− 1
2 −β+γ

+
�(−2γ + 1)

�
(

1
2 − γ + β

) (−ρ)−
1
2 +β+γ (13b)

to determine the large ρ dependences of Mβ,γ and Mβ,−γ in the forms
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lim
ρ→∞ Mβ,γ (ρ) = �(2γ + 1)

�
(

1
2 + γ − β

) eρ/2ρ−β, (14a)

lim
ρ→∞ Mβ,−γ (ρ) = �(−2γ + 1)

�
(

1
2 − γ − β

) eρ/2ρ−β. (14b)

These relations allow a ‘bound state solution’ of Whittaker’s equation that vanishes at infinity
to be constructed from a linear combination of solutions that are respectively regular and
irregular at the origin in the form

u±(ρ) = N±
[
Mβ±,+γ (ρ) − (β±, γ )Mβ±,−γ (ρ)

]
= N± e−ρ/2

[
ργ + 1

2 1F1
(
γ − β± + 1

2 , 2γ + 1, ρ
)

− (β±, γ )ρ−γ + 1
2 1F1

(−γ − β± + 1
2 ,−2γ + 1, ρ

)]
, (15)

with

�(β±, γ ) ≡ �(2γ + 1)

�(−2γ + 1)

�
(

1
2 − γ − β±

)
�

(
1
2 + γ − β±

) . (16)

The combination of functions in equation (15) is referred to in the mathematical literature as
Whittaker’s function [9], and represents the only correct bound state solution of Whittaker’s
equation in the case of a Coulomb potential terminated at a finite (non-zero) value of r.

We note that the authors of [7] attempted to obtain distinct solutions of equation (7) for a
finite nucleus by separately equating the coefficients of the functions Mβ,γ and Mβ,−γ to zero,
and terminating the series form for the remaining function by a choice of a discrete value of
β. In this attempt, under the condition that the coefficient of the singular function Mβ,−γ (ρ)

was set to zero, the termination condition on the series form of the function Mβ,γ produced
the standard formula for the energy in equation (12), whereas, under the condition that the
coefficient of the function Mβ,γ (ρ) was set to zero, the condition terminating the function
Mβ,−γ (ρ) led instead to a formula for the energy expressible as [7]

E = mc2

(
n′ −

√(
j + 1

2

)2 − (αZ)2
)

√(
n′ −

√(
j + 1

2

)2 − (αZ)2
)2

+ (αZ)2

, n′ = 0, 1, 2, . . . . (17)

This formula, as a consequence of the negative sign preceding the square root in its numerator,
predicts the binding energy of the electron to approach mc2 for values of n′ and j for which
n′ − (

j + 1
2

) = 0, on the basis of which the authors of [7] predicted the existence of new bound
states of the hydrogenic atom referred to as ‘deep Dirac levels’ (DDL). Instead, we point out
that both equations (17) and (12) result in inaccurate eigenvalues in the case of an atom with
a finite size nucleus. The inaccuracy of the eigenvalues in this case is a consequence of their
lack of dependence on either the boundary conditions at the nuclear radius or the form of the
potential inside the nucleus4. In particular, the lack of dependence on the potential inside the
nucleus makes it impossible to match a solution corresponding to either set of energy values
to a solution interior to the nucleus.

In the present analysis, the use of the solution in equation (15), in combination with
equation (6) and the definition of u±(ρ), determines radial functions g and f corresponding
to proper bound state solutions of the Dirac equation in the forms

g(r) = 1
2ρ−3/2[u+(ρ) + u−(ρ)], (18)

4 This argument was omitted in previous criticisms of [7] by Rice R A, Kim Y E and Rabinowitz M, in 1994 Fusion
Technol. 26 110, and 1995 Fusion Technol. 27 348, which were rebutted by Maly J A and Vavra J, in 1994, Fusion
Technol. 26 111, and 1996 Fusion Technol. 30 386.
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f (r) = −1

2

√
mc2 − E

mc2 + E
ρ−3/2[u+(ρ) − u−(ρ)]. (19)

Here the coupling between the functions g and f demanded by the Dirac equation connects
the coefficients N+ and N− in the separate solutions u+(ρ) and u−(ρ) through the equality

N−
N+

= − γ − ζ(E′)
κ − ζ(E′)/E′ ≡ −η−(E′), (20)

where we use the notation

E′ ≡ E/mc2, ζ(E′) ≡ αZE′/
√

1 − E′2, η±(E′) ≡ γ ± ζ(E′)
κ − ζ(E′)/E′ . (21)

Using equations (15), and (18)–(21), it can be shown that the functions g(r) and f (r) have
the explicit forms

g(r) = 1

2
Nβ e−ρ/2ργ−1[1F1(γ − ζ(E′), 2γ + 1, ρ) − η−(E′)1F1(γ + 1 − ζ(E′), 2γ + 1, ρ)

−�(β, γ )ρ−2γ
1F1(−γ − ζ(E′),−2γ + 1, ρ)

−�(β, γ )η+(E
′)ρ−2γ

1F1(−γ + 1 − ζ(E′),−2γ + 1, ρ)] (22a)

f (r) = 1

2
Nβ

√
1 − E′

1 + E′ e−ρ/2ργ−1[1F1(γ − ζ(E′), 2γ + 1, ρ)

+ η−(E′)1F1(γ + 1 − ζ(E′), 2γ + 1, ρ)

−�(β, γ )ρ−2γ
1F1(−γ − ζ(E′),−2γ + 1, ρ)

+ �(β, γ )η+(E
′)ρ−2γ

1F1(−γ + 1 − ζ(E′),−2γ + 1, ρ)] (22b)

where Nβ represents a normalization constant, and the energy parameter E′ must be derived
from the continuity conditions at the value of r for which the Coulomb potential in equation (4)
becomes invalid. It should be noted that equations (22) include contributions from solutions
of Whittaker’s equation corresponding to both positive and negative γ .

2.2. Solution of the Dirac equation inside the nucleus

For values of the radial coordinate less than the nuclear radius the potential energy function
V (r) in equation (1) can be assumed to have a finite form different from the Coulomb form in
equation (4). In what follows, we adopt two common models for the nuclear potential function,
which respectively simulate either a uniform charge distribution or a constant potential for
r < R. The separate models correspond to functions V (r) of the forms

V (r) = −3

2

Ze2

R
+

Ze2

2R3
r2, (r < R) uniformly charged nucleus, (23a)

V (r) = −Ze2/R, (r < R) constant potential inside nucleus, (23b)

which can be rescaled for r < R in terms of dimensionless quantities as

V (r)

mc2
= −(b′ − ξr ′2), uniformly charged nucleus, (24a)

V (r)

mc2
= −αZ/R′, constant potential inside nucleus, (24b)
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where

r ′ =
(mc

h̄

)
r, R′ =

(mc

h̄

)
R, b′ = 3

2

αZ

R′ , ξ = αZ

2R′3 . (25)

It is sufficient to construct a series solution of the radial equations (3) for r < R. For this
purpose, it is useful to assume the forms

g(r ′) = Ar ′ν−1
∞∑

n=0

anr
′n, f (r ′) = Br ′ν−1

∞∑
n=0

bnr
′n. (26)

Substitution of equations (26) into equations (3) results in recursion relations for the coefficients
an and bn that have non-trivial solutions only under either of the two conditions

ν = −κ, b0 = 0, κ < 0 (27a)

ν = +κ, a0 = 0, κ > 0. (27b)

The two choices result in the separate solutions

g(r ′) = Ar ′|κ|−1(1 + a2r
′2 + a4r

′4 + · · ·), f (r ′) = Ar ′|κ|(b1 + b3r
′2 + b5r

′4 + · · ·), κ < 0

(28a)

g(r ′) = Br ′|κ|(a1 + a3r
′2 + a5r

′4 + · · ·), f (r ′) = Br ′|κ|−1(1 + b2r
′2 + b4r

′4 + · · ·) κ > 0.

(28b)

For V (r) in the form (24a), the coefficients of the leading terms have the forms

a1 = Q+

2|κ| + 1
, a2 = − Q+Q−

2(2|κ| + 1)
, a3 = − 1

2|κ| + 3

(
Q+Q−Q+

2(2|κ| + 1)
+ ξ

)
,

a4 = (Q+Q−)2

8(2|κ| + 3)(2|κ| + 1)
+

ξ

4

[
Q+

2|κ| + 3
+

Q−
2|κ| + 1

]
, a5 = 1

2|κ| + 5
(Q+b4 − ξb2)

(29)

b1 = − Q−
2|κ| + 1

, b2 = − Q+Q−
2(2|κ| + 1)

, b3 = 1

2|κ| + 3

(
Q−Q+Q−
2(2|κ| + 1)

+ ξ

)
,

b4 = (Q+Q−)2

8(2|κ| + 3)(2|κ| + 1)
+

ξ

4

[
Q−

2|κ| + 3
+

Q+

2|κ| + 1

]
, b5 = − 1

2|κ| + 5
(Q−a4 − ξa2),

(30)

with

Q± ≡ E′ + b′ ± 1, (31)

whereas, for V (r) in the form (24b), the corresponding coefficients have the above forms with
b′ = αZ/R′ and ξ = 0.

2.3. Continuity conditions at the boundary of the nucleus

The solutions of the Dirac equation for values of r exterior and interior to the nucleus derived
from the respective equations (22) and (28) need to be made continuous at the boundary of
the nucleus defined by r = R.5 To do this, it is necessary to assign a value to the radius of

5 Because the Dirac equation is first order in the space coordinates, it is sufficient to require only the continuity of
�(r) at r = R.
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the nucleus. Here, we choose to connect the nuclear radius to the mass number A through the
empirical relation

R ∼= r0A
1/3, (32)

where r0 = 1.2 × 10−15 m. The inaccuracy of this formula for small values of A is made
unimportant in the present calculation by the emphasis on large values of both A and Z. The
continuity requirement at r = R produces the simultaneous equations

ginterior(R) = gexterior(R), finterior(R) = fexterior(R), (33)

which can be conveniently combined into the ‘matching equation’

ginterior(R)

finterior(R)
= gexterior(R)

fexterior(R)
. (34)

The equation has the effect of reducing the computation of the energies of the atomic electron
or muon in the case of a finite size nucleus to a boundary value problem involving a single
unknown E′, the solution of which determines the allowed energy eigenvalues.

2.4. Derivation of correction to energy by the use of perturbation theory

We can compare the energy eigenvalues derived from equation (34) with the corrected
eigenvalues obtained from first-order perturbation theory under the assumption that the change
in the Coulomb potential in the interior of the nucleus is treated as a perturbation. Specifically,
the perturbation to the Hamiltonian consistent with the expressions for the nuclear potential
assumed above has the form

V (r) =
{

0, r > R

(r), r � R
, (35)

with (r) defined by either of the two formulae

(r) = Ze2

R

(
r2

2R2
− 3

2
+

R

r

)
, uniformly charged nucleus, (36a)

(r) = −Ze2

R
+

Ze2

r
, constant potential inside nucleus. (36b)

It is significant that the corrections to the energy, E, obtained from the perturbation theory
equation E = 〈�(o)|V (r)|�(o)〉 derive from radial functions g and f representing solutions
of the Dirac equation for the case when the Coulomb potential is valid over the entire range
of r values from 0 to ∞. For the lowest eigenstates, corresponding to energies defined by
equation (12) for n′ equal to 0 and 1, the formula for E, along with the form for V (r) in
equation (36a), results in corrections to the energy given by the respective formulae6

(E)n′=0 = (αZ)2(2αZ)2γ

�(2γ + 1)
mc2R′2

(
1

2γ + 3
− 3

2γ + 1
+

1

γ

)
, (37)

and

(E)n′=1 = (2qR)2γ +1(mc2)

�(2γ + 1)(2γ + 1 + η2)

αZ

R′ {}, (38)

6 For brevity, we show only the perturbation theory result for E in the case when (r) has the form in
equation (36a).
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where

{} ≡ η2(2qR)2

2γ + 1

[
1

2(2γ + 5)
− 3

2(2γ + 3)
+

1

2γ + 2

]

+ (E′ − η)η(2qR)

[
1

2γ + 4
− 3

2γ + 2
+

2

2γ + 1

]

+ (η2 − 2ηE′ + 1)

[
(2γ + 1)

2(2γ + 3)
− 3

2
+

(2γ + 1)

2γ

]
, (39)

with η ≡ −κ + αZ/
√

1 − E′2. For n′ = 0, the requirement that the quantum number κ be
restricted to the value −1 results in a ground state restricted to the parity +1; whereas for n′ = 1,
the two allowed values of κ , equal to +1 and −1, result in distinct excited states with odd and
even parities, connected, respectively, to the 2p and 2s states of the non-relativistic theory. We
note that, in the limit when the quantity γ goes to 1, the perturbation theory corrections to
the energy derived here for the ground and even parity excited states reduce (exactly) to the
perturbation corrections derived from non-relativistic wavefunctions. Specifically, the ground
state correction reduces to

(E)NR = 2
5 (aZ)4R′2mc2. (40)

In contrast, because the odd parity state in the non-relativistic theory corresponds to a non-zero
orbital angular momentum, for which the non-relativistic wavefunction approaches zero in the
vicinity of the nucleus, the correction derived from equation (38) in the limit γ → 1, with
κ = +1, exceeds the correction derived from non-relativistic perturbation theory by 6 orders
of magnitude! In the non-relativistic limit, the mass m of the electron or muon is properly
replaced by the reduced mass of the composite system. The same (less valid) replacement in
the relativistic limit has a significant effect on the magnitude of E only in the case of nuclei
with small values of A and Z.

3. Numerical results

In this section, we present the results of the solution of the matching equation (34) for the
energy eigenvalues of single-electron and single-muon atoms, with the nuclear radius given
by equation (32). Specifically, we compare the correction, E, to the eigenvalue produced
by the finite size of the nucleus with the ‘unperturbed eigenvalue’, E0, of a point nucleus with
charge and mass numbers Z and A, computed from equation (12). The dependence of the
correction to the energy on the form of the potential energy inside the nucleus necessitates a
choice of a model for the nuclear potential. Here we take this potential to have the alternative
forms defined by equations (23a) and (23b), cited as models 1 and 2, respectively. For Z = 1,
the nuclear size effect is small, as expected, whereas, for high values of Z, the effect becomes
large, and can be measured most easily as an isotope shift observed through the splitting of the
K x-ray line of an atom with two or more stable isotopes. In electronic atoms with multiple
electrons, the effect of nuclear size is in general masked by the (larger) effect of electron
screening. On the other hand, because the effect of screening is approximately the same for
two isotopes of given Z, the isotope shift is largely unaffected by the screening.

For the two models of the nuclear potential, table 1 lists calculated values of the energy
correction to the ground states of single-electron atoms corresponding to stable isotopes of
the five elements H, U, Ag, Eu and Tl, the last three of which have isotopes of comparable
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Table 1. Values derived from the present calculation and from relativistic and non-relativistic
perturbation theory for correction to the ground state energy of an hydrogenic atom produced by
the finite size of a nucleus of charge Z. Models 1 and 2 assume (1) a uniformly charged nucleus
and (2) a constant potential inside the nucleus, respectively. Ground state: n′ = 0, κ = −1.

Z E0 (MeV) Model 1 Model 2

1 0.510 9853 A = 1 A = 2 A = 1 A = 2

E (eV) 5.60 × 10−9 8.89 × 10−9 9.33 × 10−9 14.82 × 10−9

Epert (eV) 5.60 × 10−9 8.89 × 10−9 9.34 × 10−9 14.82 × 10−9

ENR (eV) 5.60 × 10−9 8.89 × 10−9 9.33 × 10−9 14.81 × 10−9

Ecode (eV) 5.60 × 10−9 8.89 × 10−9

47 0.480 0039 A = 107 A = 109 A = 107 A = 109

E (eV) 1.267 55 1.282 28 2.046 64 2.070 40
Epert (eV) 1.362 65 1.378 54 2.215 98 2.241 82
ENR (eV) 0.615 58 0.623 23 1.025 97 1.038 72
Ecode (eV) 1.267 06 1.281 79

63 0.453 7962 A = 151 A = 153 A = 151 A = 153

E (eV) 8.609 42 8.676 36 13.5370 13.642 11
Epert (eV) 9.894 20 9.971 57 15.751 94 15.875 12
ENR (eV) 2.500 26 2.522 28 4.167 09 4.203 81
Ecode (eV) 8.604 38 8.671 24

81 0.412 176 A = 203 A = 205 A = 203 A = 205

E (eV) 60.383 60.698 91.005 91.478
Epert (eV) 78.388 78.802 120.540 121.177
ENR (eV) 8.322 8.377 13.870 13.961
Ecode (eV) 60.342 60.658

92 0.378 719 A = 235 A = 238 A = 235 A = 238

E (eV) 193.180 194.376 281.320 283.047
Epert (eV) 281.357 283.126 420.373 423.016
ENR (eV) 15.270 15.400 25.450 25.666
Ecode (eV) 193.066 194.260

abundance with A values that differ by 2. In particular, the table compares the corrections,
E, derived from the matching condition in equation (34) with the values of E obtained, for
the same model of the nuclear potential, using first-order perturbation theory based on both
relativistic, (E)pert, and non-relativistic wavefunctions, (E)NR. The significant dependence
of E on the model of the nuclear potential is evident from the table. However, the interest
here is in the discrepancy between the perturbation theory result and the exact result for a
given potential. As expected, the non-relativistic wavefunctions lead to inaccurate values
of E for high Z. More significantly, table 1 shows that the values obtained for E from
relativistic perturbation theory, for the Z values 47, 63, 81 and 92, exceed the exact values
obtained from the continuity conditions by roughly 8, 15, 30 and 45 per cent respectively.
Similar calculations, made for higher energy states of the atom, show discrepancies of the
same magnitude between the exact theory and perturbation theory for the first two excited
states. The relatively weak dependence of E on the mass number A makes it possible to
summarize the corrections to the energies of the ground state obtained from the two theories
(using model 1) by the graphs of E versus Z shown in figure 1. The inaccuracy of first-order
perturbation theory for high Z is made important by the complexity of relativistic second-order
perturbation theory.
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Figure 1. Graphs versus Z of the nuclear size corrections to the ground state energy of a
hydrogenic atom obtained from the matching condition in equation (34) (full circles) and relativistic
perturbation theory (open circles) using model 1.

Table 2. Isotope shift of the ground state and the first excited state of an hydrogenic atom with
charge Z, computed for model 1 by using the matching condition in equation (34) and relativistic
perturbation theory.

Isotope shift in electronic atom δAE (eV) (model 1)

Ground state: n′ = 0, κ = −1 First excited state: n′ = 1, κ = −1

Relativistic Relativistic
Z Exact theory perturbation theory Exact theory perturbation theory

1 3.29 × 10−9 3.29 × 10−9 4.11 × 10−10 4.11 × 10−10

47 0.0147 0.0159 0.0020 0.0022
63 0.0669 0.0774 0.0101 0.011 65
81 0.315 0.414 0.0537 0.0710
92 1.196 1.769 0.226 0.335

It is useful to compare the results derived from the matching condition in equation (34)
with the results extracted from an atomic structure code for the same model and radius of the
nucleus. To do this, we include in table 1 the values of E obtained from the general purpose
relativistic atomic structure program GRASP [10] for the case of a uniformly charged nucleus.
Comparison of these values, denoted by Ecode, with the values obtained from equation (34)
shows that the two sets of values are in excellent agreement.

In general, while the correction to the energy produced by the size of the nucleus is
significant for large Z, the isotope shift (defined by the difference between the corrections to
the eigenvalues of the (two) isotopes of Z) remains small. Table 2 lists the values obtained for
the isotope shift from both the exact theory and perturbation theory. For brevity, we display
only the results of model 1, but include the isotope shift for the first excited state of the atom.

In analogy with the results listed in table 1, we list in table 3 the calculated values of E0

and E for the ground states of muonic atoms with nuclei corresponding to isotopes of the
elements H, Ag, Eu, Pb and U. The table shows the inaccuracy of perturbation theory for all
values of Z above 1 in the case of muonic atoms (which perturbation theory predicts to be
unbound for Z exceeding 47). Table 4 shows the corresponding values of E0 and E obtained
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Table 3. Values derived from the present calculation and relativistic and non-relativistic
perturbation theory for corrections to the ground state energy of a muonic atom produced by
the finite size of a nucleus of charge Z, using models 1 and 2.

Ground state of muonic atom: n′ = 0, κ = −1

Model 1 Model 2

Z A = 1 A = 2 A = 1 A = 2

E0 (MeV) 105.6555
1 E (eV) 0.0492 0.0780 0.0819 0.1297

(E)pert (eV) 0.0495 0.0786 0.0825 0.1309
(E)NR (eV) 0.0495 0.0785 0.0825 0.1309

A = 107 A = 109 A = 107 A = 109

E0 (MeV) 99.249 58
47 E (MeV) 1.6605 1.6700 2.0947 2.1053

(E)pert (MeV) 6.3087 6.3823 10.2594 10.3791
(E)NR (MeV) 5.4417 5.5093 9.0695 9.1822

A = 151 A = 153 A = 151 A = 153

E0 (MeV) 93.830 65
63 E (MeV) 4.4832 4.4970 5.3530 5.3671

(E)pert (MeV) 26.5111 26.7184 42.2066 42.5367
(E)NR (MeV) 22.1022 22.2969 36.837 37.162

A = 206 A = 208 A = 206 A = 208

E0 (MeV) 84.654 56
82 E (MeV) 10.5217 10.5395 12.0087 12.0243

(E)pert (MeV) 93.318 93.801 143.163 143.904
(E)NR (MeV) 78.029 78.533 130.048 130.888

A = 235 A = 238 A = 235 A = 238

E0 (MeV) 78.307 06
92 E (MeV) 15.223 15.255 17.063 17.090

(E)pert (MeV) 157.366 158.356 235.119 236.598
(E)NR (MeV) 134.985 136.131 224.975 226.885

from model 1 for the first excited states of the muonic atoms. The different values for the
binding energies of the ground states of the muonic atoms as a function of Z predicted by the
point nucleus theory and the exact theory (for models 1 and 2) are summarized by the graphs
in figure 2. We note that the upper two graphs are in close agreement with the corresponding
graphs in [2].

In summary, we develop a general method for the determination of energy eigenvalues of
a potential energy function that has separate dependences on the radial coordinate for r greater
and less than a given value R, and use this method to calculate the effect of finite nuclear size
on the energy levels of single-electron and single-muon atoms in the cases of two commonly
used models for the nuclear potential. The method has the advantage of allowing the nuclear
size corrections to be derived non-perturbatively in terms of solutions of the Dirac equation.
For values of Z greater than 40 in the case of electronic atoms, and greater than 1 in the case
of muonic atoms, we find large discrepancies between our results and those obtained from
first-order perturbation theory using relativistic wavefunctions. Moreover, we find our method
to be considerably simpler and more accurate than higher order perturbation theory.
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Figure 2. Graphs versus Z of the binding energy of the ground state of a muonic atom, predicted
by the point nucleus theory (dashed curve) and the (exact) corrected theory based on the separate
models 1 (full squares) and 2 (open squares).

Table 4. Values derived from the present calculation and relativistic and non-relativistic
perturbation theory for corrections to the energy of the first excited state of a muonic atom
produced by the finite size of a nucleus of charge Z using model 1.

Excited state of muonic atom:
n′ = 1, κ = +1 (Model 1)

Z A = 1 A = 2

E0 (MeV) 105.657 66
1 E (eV) 6.408 × 10−8 10.390 × 10−8

(E)pert (eV) 6.425 × 10−8 10.427 × 10−8

(E)NR (eV) 6.410 × 10−8 10.399 × 10−8

A = 107 A = 109

E0 (MeV) 104.043 83
47 E (MeV) 0.018 09 0.018 31

(E)pert (MeV) 0.041 17 0.041 89

A = 151 A = 153

E0 (MeV) 102.658 86
63 E (MeV) 0.107 73 0.108 42

(E)pert (MeV) 0.4039 0.4089

A = 206 A = 208

E0 (MeV) 100.270 01
82 E (MeV) 0.473 37

(E)pert (MeV) 3.4209

A = 235 A = 238

E0 (MeV) 98.583 68
92 E (MeV) 0.878 08 0.880 55

(E)pert (MeV) 8.7805 8.8763
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