Close encounters: The influence of electron coalescence on atomic wavefunctions.

David G. Ellis The University of Toledo Department of Physics and Astronomy

April 2, 2003

(1) Atomic Structure and Spectra.

What we are trying to do.

(2) Electron Correlation.

One wavefunction for N electrons.

(3) Cato's Cusp and Hund's Rule.

It's important to consider close encounters.

(4) A Proposed Solution.

Try to add a new basis function to an already large set.

Begin with a good approximate wavefunction for N electrons:

$$\Psi_0 = \sum_{\gamma} C_{\gamma} \Phi_{\gamma}$$

The sum is over a number of configuration state functions (CSF). Each CSF Φ_{γ} is an antisymmetric function of the electron coordinates, specified by the label γ , which includes not only the electron **configuration** $\{(n_1l_1)^{w_1}, (n_2l_2)^{w_2}, \cdots, (n_{N_g}l_{N_g})^{w_{N_g}}\}$, but also the angular momentum coupling conditions and other quantities such as fractional parentage coefficients needed to specify the CSF.

$$\Phi_{\gamma}(L, S, J, M) = \sum_{\alpha_1 \cdots \alpha_N} \langle \alpha_1 \cdots \alpha_N \mid \gamma, L, S, J, M \rangle \Phi(\alpha_1 \cdots \alpha_N)$$

Here $\Phi(\alpha_1 \cdots \alpha_N)$ is a Slater determinant, *i.e.* an antisymmetrized direct product of N single-particle Pauli wavefunctions (spin-orbitals):

$$\Phi(\alpha_1 \cdots \alpha_N) = \mathcal{A} \ \phi_{\alpha_1}(1) \cdot \phi_{\alpha_2}(2) \cdots \phi_{\alpha_N}(N) ,$$

with of course

$$\phi_{\alpha}(\vec{r},\sigma) = \frac{1}{r} P_{nl}(r) Y_{lm}(\theta,\phi) \chi_{\mu}(\sigma) \text{ and } \alpha = \{n,l,m,\mu\}.$$

The enhancement function for N electrons

Given the best available orbital-based solution Ψ_0 , we propose to construct an enhanced wavefunction

$$\Psi = \Psi_0 + \Psi'$$

where Ψ' is an antisymmetric *N*-electron function which contains explicitly correlated two-electron functions. We want Ψ' to be zero or very small everywhere except where any two electrons come close together, and to be orthogonal to each CSF in the original solution Ψ_0 . We write an antisymmetrized function as:

$$\Psi' = \mathcal{A} \left\{ \Psi_{res}(1, 2, \cdots N - 2)_{L_r, S_r}, \psi'_{ij}(N - 1, N)_{L_p, S_p} \right\}_{L, S, J, M}$$

Our initial trial form for the two-particle function is

$$\psi'_{ij}(1,2)_{L,S} = \psi'_{L,M}(\vec{r_1},\vec{r_2}) \phi(r_1,r_2,s)$$

where $s = r_{12}$ is the inter-electron distance, and $\psi'_{L,M}$ is the simplest possible function to give the electron pair the right total angular momentum. We can guarantee orthogonality by removing all the lower partial waves from our two-electron function, for example by the following definitions:

$$\phi_{\lambda}(r_1, r_2, s) = \phi(s) - \sum_{k=0}^{\lambda-1} \Gamma_k(r_1, r_2) P_k(\cos \theta_{12}),$$

with

$$\Gamma_k(r_1, r_2) = \frac{2k+1}{2} \int_{-1}^{+1} \phi(s) P_k(\cos \theta_{12}) d\cos \theta_{12}.$$

Finding the change in energy

We want:

$$\Delta E = \langle \Psi \mid \mathbf{H} \mid \Psi \rangle - E_0$$

We have:

$$\mathbf{H} = \sum_{ij} H_{ij}$$

$$\Psi = \Psi_0 + \alpha \ \Psi'$$

$$\langle \mathbf{H} \rangle = \frac{E_0 + 2\alpha \, \langle \Psi_0 \mid \mathbf{H} \mid \Psi' \rangle + \alpha^2 \, \langle \Psi' \mid \mathbf{H} \mid \Psi' \rangle}{1 + \alpha^2}$$

Using the MCFP expansion we get:

$$\langle \Psi_0 \mid \mathbf{H} \mid \Psi' \rangle = \sum_{ij} C_{ij} \langle \psi_{ij}(1,2) \mid H_{12} \mid \psi'_p(1,2) \rangle$$

So now the problem is reduced to doing a two-electron integral.

But:

$$\psi_{ij}(1,2)$$
 involves $r_1, \theta_1, \phi_1, r_2, \theta_2, \phi_2$
 $\psi'_p(1,2)$ involves $\alpha, \beta, \gamma, r_1, r_2, \theta_1 2$

Calculation of $\langle \Psi({}^{1}L) \mid \mathsf{H} \mid \Phi({}^{1}L) \rangle$

(1) H is a symmetric spin-independent scalar two-body operator, for example the non-relativistic hamiltonian.

(2) $| \Phi({}^{1}L) \rangle$ is a two-electron spin-singlet state:

$$\Phi_{LM}(\vec{r_1}, \vec{r_2}) = \sum_{K} (-1)^{(M+K)} \phi_{LK}(r_1, r_2, \theta) \mathcal{D}_{MK}^L(\alpha, \beta, \gamma)$$

Here θ is the angle between the vectors $\vec{r_1}, \vec{r_2}$, the Euler angles α, β, γ specify the orientation of the plane containing the two vectors, and \mathcal{D}_{MK}^L is the Wigner D-function.

(3) $|\Psi({}^{1}L)\rangle$ is a two-electron spin-singlet state represented by an orbital-based LS-coupled function defined by

$$\Psi_{l_1 l_2 LM}(\vec{r}_1, \vec{r}_2) = \sum_{m_1, m_2} \langle l_1, m_1; l_2, m_2 \mid L, M \rangle \psi_{l_1 m_1}(\vec{r}_1) \psi_{l_2 m_2}(\vec{r}_2)$$

Now we can transform this also to the variables $(r_1, r_2, \theta, \alpha, \beta, \gamma)$:

$$\Psi_{l_1 l_2 LM}(\vec{r_1}, \vec{r_2}) = \sum_{K} (-1)^{M+K} F_{l_1 l_2}^{LK}(\theta) R_{l_1}(r_1) R_{l_2}(r_2) \mathcal{D}_{MK}^L(\alpha, \beta, \gamma)$$

with the definition

$$F_{l_1 l_2}^{LK}(\theta) = \sum_{m_1 m_2} \left\langle l_1 m_1, l_2 m_2 \mid LK \right\rangle Y_{l_1 m_1}(\pi/2, -\theta/2) Y_{l_2 m_2}(\pi/2, \theta/2)$$

The non-relativistic hamiltonian for two electrons in the field of a fixed nucleus of charge Z can be written

$$\mathbf{H}_{\mathrm{nr}} = \mathbf{H}_{\mathrm{rad}} + \mathbf{H}_{\mathrm{ang}} - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{r_{12}}.$$
$$\mathbf{H}_{\mathrm{rad}} = -\frac{1}{2r_1} \frac{\partial^2}{\partial r_1^2} r_1 - \frac{1}{2r_2} \frac{\partial^2}{\partial r_2^2} r_2$$
$$\mathbf{H}_{\mathrm{ang}} = \frac{1}{2r_1^2} \mathbf{L}_1^2 + \frac{1}{2r_2^2} \mathbf{L}_2^2.$$

We must rewrite \mathbf{H}_{ang} in terms of the coordinates $(\alpha, \beta, \gamma, \theta)$. First we define the sum and difference of the angular momenta $\vec{\mathbf{L}} = \vec{\mathbf{L}}_1 + \vec{\mathbf{L}}_2$ and $\vec{\Delta} = \vec{\mathbf{L}}_1 - \vec{\mathbf{L}}_2$, and the components in the rotated frame $\vec{\mathbf{L}}'$. The shift operators are $\mathbf{L}_{\pm} = \mathbf{L}_x \pm i\mathbf{L}_y$ and $\mathbf{L}'_{\pm} = \mathbf{L}'_x \pm i\mathbf{L}'_y$. These have the following action on the Wigner D-functions:

$$\begin{split} \mathbf{L}^{2} \, \mathcal{D}_{MK}^{L}(\alpha, \beta, \gamma) &= L(L+1) \, \mathcal{D}_{MK}^{L}(\alpha, \beta, \gamma) \\ \mathbf{L}_{z} \, \mathcal{D}_{MK}^{L}(\alpha, \beta, \gamma) &= M \, \mathcal{D}_{MK}^{L}(\alpha, \beta, \gamma) \\ \mathbf{L}_{\pm} \, \mathcal{D}_{MK}^{L}(\alpha, \beta, \gamma) &= C_{LM}^{\pm} \, \mathcal{D}_{M\pm 1, K}^{L}(\alpha, \beta, \gamma) \\ \mathbf{L}_{z}^{\prime} \, \mathcal{D}_{MK}^{L}(\alpha, \beta, \gamma) &= K \, \mathcal{D}_{MK}^{L}(\alpha, \beta, \gamma) \\ \mathbf{L}_{\pm}^{\prime} \, \mathcal{D}_{MK}^{L}(\alpha, \beta, \gamma) &= C_{LK}^{\pm} \, \mathcal{D}_{M, K\pm 1}^{L}(\alpha, \beta, \gamma) \end{split}$$

The result for the angular part of the kinetic energy operator is

$$\begin{aligned} \mathbf{H}_{\text{ang}} &= \frac{1}{8} \left(\frac{1}{r_1^2} + \frac{1}{r_2^2} \right) (\mathbf{L}^2 + \mathbf{\Delta}^2) + \frac{1}{4} \left(\frac{1}{r_1^2} - \frac{1}{r_2^2} \right) \vec{\mathbf{L}} \cdot \vec{\mathbf{\Delta}} \\ \mathbf{\Delta}^2 &= -4 \csc \theta \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{2 - \sin^2 \theta}{\sin^2 \theta} \left(\mathbf{L}^2 - \mathbf{L}'_z^2 \right) + \frac{\cos \theta}{\sin^2 \theta} \left(\mathbf{L}'_+^2 + \mathbf{L}'_-^2 \right) \\ \vec{\mathbf{L}} \cdot \vec{\mathbf{\Delta}} &= i \left(\frac{\partial}{\partial \theta} + \frac{\cos \theta}{2 \sin \theta} \right) \mathbf{L}'_z - \frac{i}{4 \sin \theta} \left(\mathbf{L}'_+^2 - \mathbf{L}'_-^2 \right) \end{aligned}$$

To write the necessary integrals for matrix elements using Euler angles (α, β, γ) and internal coordinates (r_1, r_2, θ) , define

$$\int d^3 r_1 \int d^3 r_2 = \int d\tau \int d\omega$$

$$\int d\omega = \int_0^{2\pi} d\alpha \int_0^{\pi} \sin\beta \, d\beta \int_0^{2\pi} d\gamma$$

$$\int d\tau = \int_0^{\infty} r_1^2 dr_1 \int_0^{\infty} r_2^2 dr_2 \int_0^{\pi} \sin\theta \, d\theta$$

Now we can use the orthonormality integral for the Wigner functions

$$\frac{1}{8\pi^2} \int \mathcal{D}_{M'K'}^{L'}(\alpha,\beta,\gamma)^* \mathcal{D}_{MK}^L(\alpha,\beta,\gamma) \ d\omega = \frac{\delta_{L'L} \delta_{M'M} \delta_{K'K}}{2L+1}$$

to write our interaction matrix element in terms of

$$\int R_{l_1}(r_1)R_{l_2}(r_2)\mathcal{H}_{l_1l_2}^{(L)}(r_1,r_2,\theta)\phi_{\lambda}(r_1,r_2,\theta)d\tau$$

where we have defined

$$\mathcal{H}_{l_1 l_2}^{(L)}(r_1, r_2, \theta) \equiv \sum_{K' K} F_{l_1 l_2}^{L K'} \cdot \int \mathcal{D}_{M K'}^{L} \mathbf{H}_{\mathrm{nr}} \mathcal{D}_{M K}^{L} d\omega \cdot F_{0L}^{L K}$$

Here \mathbf{H}_{nr} is the nonrelativistic hamiltonian operator for the twoelectron system. It contains derivatives which act on the remaining variables (r_1, r_2, θ) in the enhancement function $\phi_{\lambda}(r_1, r_2, \theta)$, in addition to the derivatives with respect to the Euler angles, which we work out analytically. Finally the crucial function is

$$\begin{aligned} \mathcal{H}_{l_{1}l_{2}}^{(L)}(r_{1},r_{2},\theta) &= \frac{1}{2}\sqrt{[l_{1}l_{2}]/[L]} \left\langle l_{1}0,l_{2}0 \mid L0 \right\rangle P_{l_{1}}(\cos\theta) \\ &\times \left\{ H_{rad} + U - \frac{1}{2}g_{+}D_{\theta}^{2} + \frac{L(L+1)}{24} \left[2g_{+}(1+2\csc^{2}\theta) - g_{-} \right] \right\} \\ &- \frac{\pi i}{4}\sqrt{L(L+1)/3}(-1)^{l_{1}}[l_{1}l_{2}]^{1/2} \left\langle l_{1}0,l_{2}0 \mid L0 \right\rangle \left\{ \begin{matrix} l_{1} \quad l_{1} \quad 1 \\ L \quad L \quad l_{2} \end{matrix} \right\} \\ &\times F_{l_{1}l_{1}}^{10}(\theta)(2g_{+} - g_{-})(\cot\theta + 2\frac{\partial}{\partial\theta}) \\ &+ \frac{\pi(-1)^{L+1}\sqrt{[l_{2}]}}{24\sqrt{5}} \sqrt{\frac{(2L+3)!}{(2L-2)!}} \sum_{J} \left\langle l_{2}0,L0 \mid J0 \right\rangle \left\{ \begin{matrix} l_{1} \quad l_{2} \quad L \\ L \quad 2 \quad J \end{matrix} \right\} \\ &\times F_{Jl_{1}}^{20}(\theta)(2g_{+}\cot^{2}\theta + g_{-}) \\ &+ \frac{\pi}{4}(-1)^{L}[L]L(L+1)\sqrt{[l_{2}]} \left\{ \begin{matrix} 2 \quad L \quad L \\ L \quad 1 \quad 1 \end{matrix} \right\} \sum_{J} \left\langle l_{2}0,L0 \mid J0 \right\rangle \left\{ \begin{matrix} l_{1} \quad l_{2} \quad L \\ L \quad 2 \quad J \end{matrix} \right\} \\ &\times \csc\theta \left[F_{Jl_{1}}^{22}(\theta)(2g_{+}\cot\theta - ig_{-}) + F_{Jl_{1}}^{2-2}(\theta)(2g_{+}\cot\theta + ig_{-}) \right] \end{aligned}$$

Here we have used the definitions

$$U = -Z/r_1 - Z/r_2 + (N-1)/r_{12}$$

$$g_{\pm} = 1/r_1^2 \pm 1/r_2^2$$

Note that H_{rad} and D^2_{θ} contain derivatives which act on $\phi_{\lambda}(r_1, r_2, \theta)$ and which must be worked out analytically, and then the threedimensional integral $\int d\tau$ must be done numerically.

(1) Extend to pairs with L > 0.

This is what I'm working on now. The equations that must be programmed are much more complicated.

(2) Make the integrals more efficient.

The three-dimensional integrals are very time-consuming.

(3) Make the method relativistic.

The whole thing needs to be redone using Dirac wavefunctions.

(4) Transition probabilities.

We don't want just wavefunctions, we need to be able to calculate transition probabilities and other atomic properties. This will involve working out more three-dimensional integrals.